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1. Probability 1. Definition, estimation

Definition, estimation
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1. Probability 1. Definition, estimation

Probability
If an experiment is repeated N times, the relative frequency #A/N of a
certain random event A tends with increasing N under constant experi-
mental conditions towards the probability:

P (A) = lim
N→∞

#A

N
(1)

Examples of parameters previously defined as probabilities:

ζ = #MF
#DS

∣∣∣
ACR

(1.4)

MC = #DM
#MF

∣∣∣
ACR

(1.17)

MC malfunction coverage, percentage of detected malfunctions.
ζ malfunction rate during operation.
#MF number of malfunctions.
#SR number of service requests.
#DM number of detected MFs.
ACR appropriate counting ranges.
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1. Probability 1. Definition, estimation

Example »rolling a 3 in a dice game«
Possible results: 1, 2, ..., 6, favourable result: 3
Number of trials: N

20 30 40 50 600 10
0

5

10

N

scat
terin

g

#A3
= N/6

#A3

P (A3) = lim
N→∞

#A3

N
=

1

6

Probability is the best prediction for the expected relative frequency.
P (A) probability of event A.
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1. Probability 2. Chained events

Chained events
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1. Probability 2. Chained events

Chained events
Description of a random experiment by sub-experiments with linked
results. In the following, dice are rolled twice for each experiment
(events A and B, value range {1, 2, . . . , 6} respectively). From this, the
two-valued events C and D are formed with comparison operators and
these are ANDed once and ORed once and counted.
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1. Probability 2. Chained events

relative frequency

C = (A > 3)

F = (C ∨D)
E = (C ∧D)
D = (B < 3)

probability

21/40 = 53%
9/40 = 23%
6/40 = 15%
24/40 = 60% 24/36 = 67%

6/36 = 17%
2/6 = 33%

event

3/6 = 50%

The probability as limits for N → ∞ results for each experiment from
the ratio of the favourable to the number of possible outcomes. The
throwing experiments have 6 possible outcomes. Of these, 3 and 2 are
favourable for events C and D respectively. The chained events E and
F have 62 = 36 possible outcomes, of which 6 and 24 respectively are
favourable.

A relative frequency with less than 100 repetitions of the random
experiment still deviates considerably from the probability of
occurrence on average.

We will deal later with the required number of counting trials in relation
to the required estimation accuracy (see sec. 3.2.7 Range estimation
count values).
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1. Probability 2. Chained events

Additional conditions
In a conditional probability, only the trials and events that fulfil the
condition are counted∗. Let’s take the example of ORing mutually
exclusive events:

E = C ∨D on condition C ∧D = 0.

C ∨D

n
C
D
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0
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1
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0
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1
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0
0
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1
0
1

1
0
1
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1
0
1

2
0
0
0
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0
0

0
0

0
0

1
0

1
0

0
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1 1
1

1
1

1 1 10 0 0 1 11

∑ ∑
20

events not counted or total without these events

16
11

13

7
2
9

6

Both the number of counted attempts and the favourable results are
reduced by the four results with C ∧D = 1 not to be counted.

Additional conditions can have a great influence on the possible out-
comes of a random experiment and their probability of occurrence.

∗ Whether the events that are not to be counted can occur is unimportant for this purpose.
Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 10/107



1. Probability 2. Chained events

Conditional probability
Conditional probability that A occurs under condition B:

P (A|B) =
P (A ∧B)

P (B)
(2)

Conditional probability that B occurs under condition A:

P (B|A) =
P (A ∧B)

P (A)

Bayes theorem:
P (B|A) = P (A|B) · P (B)

P (A)
(3)

A, B events.
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1. Probability 2. Chained events

Example 2.1: misclassification corona test
Random variable A Person infected: P (A) = 10−4

Random variable B Test positive: P (B) = 10−2

Probability test positive if person infected: P (B|A) = 99%

What is the probability of a person being infected if test positive?

P (A) = 10−4, P (B) = 10−2, P (B|A) = 99%, P (B|A)?

Bayes theorem:
P (B|A) = P (A|B) · P(B)

P(A) (2.3)

Probability P (A|B) that a person is infected if the test is positive::

P (A|B) = P (B|A) · P (A)

P (B)
= 99% · 10

−4

10−2
≈ 1%

If the test is triggered, it is a false alarm in 99% of cases.
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1. Probability 2. Chained events

P (A) = 10−4, P (B) = 10−2, P (B|A) = 99%, P (B|A)?

Check with sample values:

P(A|B)

P(B|A)

P(A)

P(B)

≈ 1 Mio.

100

≈ 99 Mio.

99 Mio. 100 Mio.1 Mio.

test positiv test negativ

personen infected

not infected

9,900 10,000

total

total number

99.99 Mio.

person infected: P (A) = 10.000
1Mio. ≈ 10−4

test positiv: P (B) = 1Mio.
100Mio. ≈ 1%

test positiv if person infected: P (B|A) = 9.900
10.000 = 99%

person infected, if test positiv: P (A|B) = 9.900
1Mio. ≈ 1%

√
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1. Probability 2. Chained events

NOT / UND / ODER of events

Ω

Ā

Ω Ω

A ∪B
A ∪B = ∅

A
A

BA B

NOT (non-occurrence probability):
P
(
Ā
)
= 1− P (A) (4)

A – event, in the picture element of the set A.

AND (simultaneous occurrence of events A and B):
stochastic independence:

P (A|B) = P (A) =
P (A ∧B)

P (B)

P (A ∧B) = P (A) · P (B) (5)

mutually exclusive events:
P (A ∧B) = 0 (6)
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1. Probability 2. Chained events

A ∩B

A ∪B = ∅

Ω

Ω

A
B

B

A
ODER (alternative occurrence of A and B):

P (A ∨B) = P (A) + P (B)− P (A ∧B)

stochastic independence:
P (A ∧B) = P (A) · P (B)

P (A ∨B) = P (A) + P (B)− P (A) · P (B) (7)

mutually exclusive events:
P (A ∧B) = 0

P (A ∨B) = P (A) + P (B) (8)

There is no simple solution for dependent, non-exclusive events.
Workaround: Conversion into AND and OR terms of independent or
mutually exclusive events, e.g.:

A⊕B =
(
A ∧ B̄

)︸ ︷︷ ︸
independent

∨
(
Ā ∧B

)︸ ︷︷ ︸
independent︸ ︷︷ ︸

mutually exclusive

P (A⊕B) = P (A) · (1− P (B)) + (1− P (A)) · P (B)
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1. Probability 2. Chained events

Example 2.2: independently detectable faults
A system has three independently detectable faults with detection
probabilities p1 = 10%, p2 = 5% und p3 = 20%.
a) What is the probability of all faults being detected?
b) What is the probability of no fault being detected?
c) What is the probability of at least one fault detected?
d) What is the probability of proving exactly two faults?

Note:
Definition of events Fi for fault i detectable.
Definition of events A, B, C and D for the positive events per
exercise part and describing them by logical equations.
Transformation into AND of independent and OR of mutually
exclusive events. Use eq. (2.4), (2.5) and (2.8).
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1. Probability 2. Chained events

A system has three independently detectable faults with detection
probabilities p1 = 10%, p2 = 5% und p3 = 20%.
a) What is the probability of all faults being detected?

All faults are proven if the first and second and third faults are proven.
AND of independent events:

A = F1 ∧ F2 ∧ F3

P (A) = P (F1) · P (F2) · P (F3)

= p1 · p2 · p3 = 10% · 5% · 20% = 0.1%

Fi Fehler i nachweisbar.
A alle Fehler nachweisbar.
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1. Probability 2. Chained events

A system has three independently detectable faults with detection
probabilities p1 = 10%, p2 = 5% und p3 = 20%.
b) What is the probability of no fault being detected?
c) What is the probability of at least one fault detected?

b) No fault is proved if not the first or the second or the third fault
is proved. Conversion according to de Morgan’s rule into AND of
independent events:

B = F1 ∨ F2 ∨ F3 = F̄1 ∧ F̄2 ∧ F̄3

P (B) = (1− P (F1)) · (1− P (F2)) · (1− P (F3))

= (1− p1) · (1− p2) · (1− p3) = 90% · 95% · 80% = 68.4%

c) At least one fault is proven if not no fault is provable:

C = B̄

P (C) = 1− P (B) = 1− 68,4% = 31.6%
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1. Probability 2. Chained events

A system has three independently detectable faults with detection
probabilities p1 = 10%, p2 = 5% und p3 = 20%.
d) What is the probability of proving exactly two faults?

Exactly 2 faults are proven if
the first two, but not third,
the second two, but not the first, or
the first and the third, but not the second

are proved. All AND-linked events are independent and the OR-linked
terms are mutually exclusive:

D =
(
F1 ∧ F2 ∧ F̄3

)
∨
(
F̄1 ∧ F2 ∧ F3

)
∨
(
F1 ∧ F̄2 ∧ F3

)
P (D) = p1 · p2 · (1− p3) + (1− p1) · p2 · p3 + p1 · (1− p2) · p3

= 10% · 5% · 80% + 90% · 5% · 20% + 10% · 95% · 20% = 3.2%

Fi Fehler i nachweisbar.
D genau zwei Fehler nachweisbar.
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1. Probability 2. Chained events

Example 2.3: dependent fault detection
The detection probability for fault 1 is p1 = 10% regardless of the
detection of fault 2. The detection probability for fault 2, if fault 1 is
detected, is p2 = 20% and 0 otherwise, i.e. the detection of fault 2
implies the detection of fault 1.

p1 = 10%, p2 = 20%, if fault 1 is detected and 0 otherwise.

What are the probabilities that 0, 1 or 2 faults are detectable?

Note: Define events Fi for fault i is detectable and events Ei for i fault
are detectable.
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1. Probability 2. Chained events

p1 = 10%, p2 = 20%, if fault 1 is detected and 0 otherwise.

What are the probabilities that 0, 1 or 2 faults are detectable?

No fault is detectable if fault 1 is not detectable. Detection of fault
2 and not fault 1 impossible:

E0 = F̄1

P (E0) = 1− P (F1) = 1− p1 = 1− 10% = 90%

One fault is detectable if the first fault is detectable and the second
is not:

E1 = F1 ∧ F̄2

P (E1) = p1 · (1− p2) = 10% · 80% = 8%

Fi fault i is detectable.
Ei i faults are detectable.
P (Ei) probability of event Ei.

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 16/107



1. Probability 2. Chained events

p1 = 10%, p2 = 20%, if fault 1 is detected and 0 otherwise.

What are the probabilities that 0, 1 or 2 faults are detectable?

Two faults are detectable if both faults are detectable:
E2 = F1 ∧ F2

P (E2) = p1 · p2 = 10% · 20% = 2%

Check: The sum of the probabilities of the three possible
outcomes must be 1:

P (E0) + P (E1) + P (E2) = 90% + 8%+ 2% = 100%
√

Fi fault i is detectable.
Ei i faults are detectable.
P (Ei) probability of event Ei.
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1. Probability 3. Fault tree analysis

Fault tree analysis
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1. Probability 3. Fault tree analysis

Fault tree analysis (FTA)
Graphical representation for event dependencies to estimate the
probability of occurrence of hazardous situations, failures,
malfunctions, ... Symbols for event types

Ri , and

information is available (unknown probability)

cause problems in combination with others

estimable probability of occurrence
Bi

Ui

Hi

basic event with known or otherwise

undeveloped event about which insufficient

house event in normal operation that can

rence follows from that of
resulting event whose probability of occur-

Contrary to the classical fault tree representation, we use the circuit
symbols from digital technology for the representation of the logical
AND, OR and NOT linkages of events.
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1. Probability 3. Fault tree analysis

Example 2.4: engine cannot be switched off

& ≥1

probability to be
assessed or guaranteed

probability not
yet investigated

B1

pB1 pR1 = pB1 · pB2

pU1

known probability

pU1

pR1, pR1

R1 R2

U1

B2

pB2

switches fail
emergency stop

switched off
engine cannot be

pB1, pB2
power supply
an alternative
connected tofails

switch 2

fails
switch 1

pR2 = 1− (1− pR1) · (1− pU1)

Is pR2 ≤ 10−6 achievable with pB1 = pB2 = 10−3?
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1. Probability 3. Fault tree analysis

& ≥1

probability to be
assessed or guaranteed

probability not
yet investigated

B1

pB1 pR1 = pB1 · pB2

pU1

known probability

pU1

pR1, pR1

R1 R2

U1

B2

pB2

switches fail
emergency stop

switched off
engine cannot be

pB1, pB2
power supply
an alternative
connected tofails

switch 2

fails
switch 1

pR2 = 1− (1− pR1) · (1− pU1)

Is pR2 ≤ 10−6 achievable with pB1 = pB2 = 10−3?

pR1 = pB1 · pB2 = 10−6

pR2 = 1− (1− pR1) · (1− pU1) ≥ 10−6

There is only the solution with pU1 = 0. Can the risk of an alternative
power supply be excluded or does the overall solution have to be
improved?
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1. Probability 3. Fault tree analysis

Data safety improvement through a RAID
A redundancy-free storage system consisting of three hard disks loses
data if one of the three hard disks fails, a RAID 3 only if two disks fail at
the same time.

total:

≥1 ≥1R R

without redundancy
disk storage

B2B3 B1

000
0
0
0

0

0
0

0

0

0

1
1
1

1
1
1 1

1

1

R
0
0
0

0
1
1

1

1 1 1 1

p2B · (1− pB)

p2B · (1− pB)

p2B · (1− pB)

p3B

&

&

&

probability of data loss per
time step entire system

pR

probability of failure per
time step for a single disc

pB

data lossR
failure disc iBi

B1

B2

B3

≈ 3 · pB

B1

B2

B3

RAID 3

pR = 1− (1− pB)
3

pR = 3 · p2B − 2 · p3B
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1. Probability 3. Fault tree analysis

Reconvergent fan-outs
When the condition flow branches and meets again, partly dependent
events are linked. In the example

R = B1B2 ∨B2B3 ∨B1B3

the OR-linked AND terms each have a common event variable.
Unsuitable for probability estimation.
Transformation into terms of mutually exclusive events:

K001

K000 K010

K011

K110

K111

K100

K101

0 0 0 0

2 2 2

2 2 2

1 1

1 1

B2

B1

B3

R = B1B2 ∨ B̄1B2B3 ∨B1B̄2B3

pR = p2B + p2B · (1− pB) + p2B · (1− pB) = 3 · p2B − 2 · p3B
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1. Probability 3. Fault tree analysis

Generalisation to n hard disks
The probability that at least one of n discs fails is about

pF1oon = n · pB
The probability that at least two hard disks out of n fail is one minus the
probabilities that zero or one disk fail:

pF2oon = 1−

(1− pB)
n︸ ︷︷ ︸

no disc fails

+n · pB · (1− pB)
n−1︸ ︷︷ ︸

one disc fails


︸ ︷︷ ︸

no or one discs fails︸ ︷︷ ︸
at least two discs fails at the same time

pB probability that at least one disc fails.
pioon probability that i out of n discs fail simultaniously.
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1. Probability 3. Fault tree analysis

History of fault tree analysis
Introduction 1960: Final safety assessment of LGM-30 Minuteman
intercontinental ballistic missiles.
Subsequent years: Also for safety assessment of commercial
aircraft.
From the 70s: Safety assessment of nuclear power plants.
Later also automotive industry and its suppliers.

When used for safety assessment
the safety-relevant events
the basic events and
their probabilities

must be estimated in advance by other means: Pre-experiments,
expert interviews, cause-effect (Ishikawa) diagrams, ...

Estimation uncertainties, unconsidered hazard, dependencies, ...
Not very confidence-inspiring for nuclear missiles.
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1. Probability 4. Markov chains

Markov chains
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1. Probability 4. Markov chains

Markov chains (MC)
A Markov∗ chain (MC) is a stochastic model for sequences of possible
events in which the probability of each event depends only on the state
attained in the previous event.

State machine for fault detection with input sequence C1C2C3:
C1 C2 C3

S0 S1 S2 S3

C1
else

else

else

always

Start in state S0 »no correct input« and remain in state S3 »fault
detected«.

Si state i correct inputs.
Ci transition condition, here i-th correct input.
∗ Andrej Andreevič Markov, Russian mathematician, 1856-1922.
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1. Probability 4. Markov chains
C1 C2 C3

S0 S1 S2 S3

C1
else

else

else

always

In a Markov chain the transition conditions are replaced by the
transition probabilities p1 to p3 and the states by state probabilities pS.i.

pS0 pS1 allwayspS3pS2

p1

1− p2
1− p1

p2 p3

1− p1 − p3p1

At the beginning, the initial state S0 has probability pS0 = 1 and the
other states have probability pS.i|i ̸=0 = 0.

pSi probability that the FSM is in state i.
pi transition probability from state i − 1 to state i.
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1. Probability 4. Markov chains

Simulation of Markov chains

pS0 pS1 allwayspS3pS2

p1

1− p2
1− p1

p2 p3

1− p1 − p3p1

A Markov chain describes a linear system of equations for calculating
the state probabilities for the next step:

pS0
pS1
pS2
pS3


n

=


1−p1 1−p2 1−p1−p3 0
p1 0 p1 0
0 p2 0 0
0 0 p3 1

 ·


pS0
pS1
pS2
pS3


n−1

with
(
pS0 pS1 pS2 pS3

)T
0
=

(
1 0 0 0

)T .

Control criteria for equation system and simulation result:
Sum of probabilities per matrix column must be one.
Sum of all pS.i in each step must be one.

(. . .)T transposed matrix (exchange of rows and columns).
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1. Probability 4. Markov chains


pS0
pS1
pS2
pS3


n

=


1−p1 1−p2 1−p1−p3 0
p1 0 p1 0
0 p2 0 0
0 0 p3 1

 ·


pS0
pS1
pS2
pS3


n−1

Simulation with Octave or Matlab:
p1 = . . . ; p2 = . . . ; p3 = . . . ;
M=[1−p1 1−p2 1−p1−p3 0;

p1 0 0 0;
0 p2 p1 0;
0 0 p3 1 ] ;

Z= [ 1 ; 0 ; 0 ; 0 ] ;
for i dx =1:100
Z = M ∗ Z ;
p r i n t f ( ’%3i ␣%6.2 f%%␣%6.2 f%%␣%6.2 f%%␣%6.2 f%%\n ’ , idx ,100∗Z ) ;

end ;
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1. Probability 4. Markov chains

Example 2.5: Simulation of the Markov chain
Transition probabilities: p1 = 30%, p2 = 20% und p3 = 60%

...

...

... ... ... ...

......... ...

... ... ... ...

...

...

...

100%
100%
100%
100%
100%

100%

100%

100%

0
1
2
3
4
...
10

50

100

pS3

0 0 0
0
0

0

step
∑3

i=0 pSi

100.00%
70.00%
73.00%
68.50%
66.07%

51.52%

9.89%

1.26%

30.00%
21.00%
21.90%
20.55%

16.11%

3.09%

0.39%

6.00%
6.00%
6.18%

4.88%

0.94%

0.12%

3.60%
7.20%

27.49%

86.08%

98.23%

pS0 pS2

pS0 pS2pS1

p1 = 30% p2 = 20% p3 = 60%70% 100%

pS3

1-p1-p3=10%
p1=30%1-p2=80%

pS1
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1. Probability 4. Markov chains

Edge counters
With counters on the edges, the number or the expected number of
edge transitions can be determined:

pS0 pS2pS1 pS3

S0 S1 S2 S3

C1 C2 C3

C1

1− p1 p1 p2 p3

1− p2

µN1+= (1− p1 − p3) · pS2

1

µN2+= pS3

N1 ++
N2 ++

p1 1− p1 − p3

else
allways

elseelse

n number of steps.
N1 Counter, how often two correct entries are followed by a wrong one.
N2 Counter for the number of steps after fault detection.
µNi expected value of Ni.
n − µN2 expected number of steps until fault detection.
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1. Probability 4. Markov chains
The summation variables for the transition probabilities at the edges
calculate the expected edge counts.

pS0 pS2pS1

1− p1 p1 p3

1− p2

pS3

µN1+= (1− p1 − p3) · pS2

1

µN2+= pS3
p1 1− p1 − p3

p2

Extension of the simulation programme:
. . .
N1=0; N2=0;
for i dx =1:100
Z = M ∗ Z ;
N1 = N1+Z(3)∗ (1 −p1−p3 ) ;
N2 = N2+Z ( 4 ) ;
p r i n t f ( ’%3i ␣%6.2 f%%␣%6.2 f%%␣%6.2 f%%␣%6.2 f%%’ , idx ,100∗Z ) ;
p r i n t f ( ’ %6.2 f ␣%6.2 f \n ’ , N1 , N2 ) ;

end ;
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1. Probability 4. Markov chains

Example 2.6: MC simulation with edge counters
Transition probabilities: p1 = 30%, p2 = 20% und p3 = 60%:

...

...

... ... ... ...

......... ...

... ... ... ...

... ...

...

... ...

...

70.00%
73.00%
68.50%
66.07%

51.52%

9.89%

1.26%

0
0

030.00%
21.00%
21.90%
20.55%

16.11%

3.09%

0.39%

6.00%
6.00%
6.18%

4.88%

0.94%

0.12%

3.60%
7.20%

27.49%

86.08%

98.23%

1
2
3
4
...
10

50

100

step

0.16 74.48

0.14

0.05

0.02
0.01
0.01

0

27.36

1.27

0.11
0.04

0
0

µN2+= pS3

pS0 pS2pS1

1− p1 p1 p2 p3

1− p2

pS3

µN1+= (1− p1 − p3) · pS2

1
p1 1− p1 − p3

pS0 pS1 pS2 pS3 µN1 µN2

Expected number of steps until detection: n− µN2 ≈ 25
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1. Probability 4. Markov chains

»Three correct input values« as a single event

p1 · p2 · p3
S0

C1C2C3

S3 pS0

1

pS3

else allways else

Equation system of the modified Markov chain:(
pS0
pS3

)
n+1

=

(
1−p1 · p2 · p3 0
p1 · p2 · p3 1

)
·
(
pS0
pS3

)
n

mit

(
pS0
pS3

)
0

=

(
1
0

)
pS0 (n) = (1− p1 · p2 · p3) · pZ0 (n− 1) = (1− p1 · p2 · p3)n

= eln(1−p1·p2·p3)·n ≈ e−p1·p2·p3·n für p1 · p2 · p3 ≪ 1∗

pS3 (n) = 1− pZ0 (n) = 1− (1− p1 · p2 · p3)n

≈ 1− e−p1·p2·p3·n für p1 · p2 · p3 ≪ 1∗

∗ Approximation by the first of the Taylor series elements:

ln (1− x) = −
(
x+������x2

2
+

x3

3
+ . . .

)
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1. Probability 4. Markov chains

Difference between both Markov chains
p1

pS0 pS1

p2

pS2

p1

p3

1− p1

1

1− p1 − p3
1− p2

0

0.2

0

0.4

0.6

0.6

1

pS3
p1 · p2 · p3

1

20 40 60 80 n

pS3

pS0

pS3

else

with 4 states
with 2 states

Markov chain

Apparently not identical behaviour:
In the left MK missing edge S1

C1→ S1.
MK right ignores dependencies CiCjCk, CjCkCl, . . ., ...
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1. Probability 4. Markov chains

Estimation of an availability
Let a system be functional at the beginning (state G), fail at each time
step when it is intact with probability pA (transition to state F) and be
repaired when it is broken with probability pR (transition to state G):

pR

pDpA

pF

elseelse

Modelling as a simulatable system of equations:(
pA
pD

)
n+1

=

(
1− pF pR
pF 1− pR

)
·
(

pA
pD

)
n

with

(
pA
pD

)
0

=

(
1
0

)

n number of time steps.
pA probability that the system is available.
pD probability that the system is defect.
pF Probability that the system will fail in the time step.
pR probability that the system will be repaired in the time step.
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1. Probability 4. Markov chains

Example 2.7: Availability in a repair process

0

0.2

0.4

0.6

0.8

1

0 20 40 60 100

pR = 2%

pDpA

pF = 1%

elseelse

n

pD

pA

pA probability that the system is available.
pD probability that the system is defect.
pF Probability that the system will fail in the time step.
pR probability that the system will be repaired in the time step.
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1. Probability 4. Markov chains

0

0.2

0.4

0.6

0.8

1

0 20 40 60 100

pR = 2%

pDpA

pF = 1%

elseelse

n

pD

pA

For large numbers of n, the repair process tends towards the steady
state:

pA =
pR

pR + pF
; pD =

pF
pR + pF
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1. Probability 4. Markov chains

Repair process for a 1oo2 system
A 1oo2 (1 out of 2) System consisting of two identical subsystems
functions as long as one subsystem functions:

pR pR

pA1 pD1

pF pF

pA2 pD2

else else else else

pF=0.01; pR=0.02;
M=[1−pF pR; pF 1−pR ] ;
S= [ 1 ; 0 ] ;
for n=1:100

S = M ∗ S;
p2A( n)=S( 1 ) ∗ ∗ 2 ; % both systems a v a i l a b l e
p2D( n)=S( 2 ) ∗ ∗ 2 ; % both systems defec t

end ;
plot (1 :100 , p2A , 1:100 , 1−p2D)
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1. Probability 4. Markov chains

Example 2.8: Availabilty with 1oo2 redundancy
Transition probabilities: pF = 1% and pR = 2%:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

1− p2D

p2A

n

n number of time steps.
pF Probability that the system will fail in the time step.
pR probability that the system will be repaired in the time step.
1 − p2D probability that at least one system is available.
p2A probability that both systems are available.
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1. Probability 4. Markov chains

Transition probabilities: pF = 1% and pR = 2%:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

1− p2D

p2A

n

stationär (n → ∞)

beide Systeme verfügbar p2D = p2D
(
1
3

)2

kein System verfügbar p2A = p2A
(
4
3

)2

mindestens ein System verfügbar 1− p2D 1− 1
9
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1. Probability 5. Summary

Summary
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1. Probability 5. Summary

Probability of chained events
Conditional probability:

P (A|B) = P(A∧B)
P(B) (2.2)

Bayes theorem:
P (B|A) = P (A|B) · P(B)

P(A) (2.3)
Counter probability:

P
(
Ā
)
= 1− P (A) (2.4)

AND independent events:
P (A ∧B) = P (A) · P (B) (2.5)

AND mutually exclusive events:
P (A ∧B) = 0 (2.6)

OR independent events:
P (A ∨B) = P (A) + P (B)− P (A) · P (B) (2.7)

OR mutually exclusive events:
P (A ∨B) = P (A) + P (B) (2.8)

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 40/107



1. Probability 5. Summary

Fault tree analysis

& ≥1

probability to be
assessed or guaranteed

probability not
yet investigated

B1

pB1 pR1 = pB1 · pB2

pU1

known probability

pU1

pR1, pR1

R1 R2

U1

B2

pB2

switches fail
emergency stop

switched off
engine cannot be

pB1, pB2
power supply
an alternative
connected tofails

switch 2

fails
switch 1

pR2 = 1− (1− pR1) · (1− pU1)

Graphical representation of chained events.
Allowed event linkages: NOT, AND and OR of independent or
mutually exclusive events.
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1. Probability 5. Summary

Markov chains

A D

F

R

N++ µN+ = pD · pA
pR

pA pD

pF

else else else else

(
pA
pD

)
n+1

=

(
1− pF pR
pF 1− pR

)
·
(

pA
pD

)
n

with

(
pA
pD

)
0

=

(
1
0

)
µN = µN + pD · pA

Calculation of state probability for situations that can be described by
finite state machines:

Fault detection,
fault creation,
availability, ...

Edge counter for the expected number of transitions.
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2. Fault detection

Fault detection
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2. Fault detection 1. Without memory

Without memory
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2. Fault detection 1. Without memory

Operation profile

0

0.1prove the fault detection probabilityt:

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125

0.25 0.4

1

1

1
1

0

0
0
0 0

0

0
0

1
1

1

1

&

=1 y1
x1

x3

x2

0.05
0.2

0.05
0.2

0.1

0.2

0.1

0.1

0 00

x2

0 1
1 0
1 10

0
0

1
1
1
1

0
0
1
1

1

1

0

0

x1x3 y1y2

y2≥1

=1

&

Input values that

stuck-at-0

0.1
0.05
0.15
0.2

0.2
0.05

0.05
0.2

occurrence
outputinputs Frequency of

The drawn sa0 fault (gate input constantly 0) is detectable with two of
the eight possible input values. MF rate ζi is equal to the sum of the oc-
currence frequencies of both input values and obviously depends con-
siderably on the frequencies of the single input values.

Operation profile
Description of the relative frequencies of occurrence of input values,
function use, ... in operation or during the test.
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2. Fault detection 1. Without memory

The detection probability of a fault

fault not detectable
ζi

fault detectable 11− ζi

A fault i is detectable if it causes at least one MF. The detection
probability per service request is the fault-related MF rate ζi. Detection
probability with n DS or tests:

pi (ζi, n) = 1− (1− ζi)
n = 1− eln(1−ζi)·n

For ζ ≪ 1 by Tailor series ln (1− ζ) = −
(
ζ + ζ2

2
+ ζ3

3
+ . . .

)
≈ −ζ:

pi (n) = 1− e−ζi·n (9)

Prerequisites: ζi ≤ 0.1 and constant during the test.

pi (n) detection probability of fault i by n tests.
ζi MF rate caused by fault i.
n number of tests.
DS delivered service.
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2. Fault detection 1. Without memory

Comparison with the assumption on slide set 1

1−e−ζi·n

10−2 10−1 100 101
ζi · n

10−4

10−3

10−2

0,1

1

1− pi(ζ, n)

previous assumption

detection
almost always
detection

hardly any

Assumptions section 1 slide 1.128:
Faults with ζ · n ≥ 1 are detected (and removed) and
Faults with ζ · n < 1 are not detectable.

In fact, only
almost always proof from ζi · n > 5,
hardly any proof until ζi · n > 1

5 and
1/ζi is the mean detection length.
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2. Fault detection 2. With memory

With memory
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2. Fault detection 2. With memory

Service with memory

states
transient

pi

∼ (1− pi)

≈ ζi
1−pi

fault i not
stimulated stimulated

fault i
detectable

fault

after nI initialisation steps:

state probabilities:

transistion probabilities:

Many-state observer automaton in which typically a relative probability
equilibrium is established between the states before detection after nI

initialisation steps. As with faults without memory, the probability inflow
to the state »fault detected« is then inversely proportional to its state
probability:

1− e−ζi·n < pi (n) < 1− e−ζi·(n−nI)

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 49/107



2. Fault detection 2. With memory

Example DR1 fault (destructive read of a one)

pR pSN

1

pS0
pRpW1 pS1 pS2
pW1

pW0

pW0

S0: value 0 or unknown
S1: value 1 written
S2: 1 destructive read
SN: fault detected

else else else

write 1 read readdetection sequence

In a RAM, when the faulty memory cell with address a is read, a stored
1 is corrupted into a 0. The proof requires:

write 1 to address a (transition to excited state S1),
read value from address a (transition to excited state S2),
read from address a without intermediate write access to a
(transition to the detection state SN).

pW... probability that a 0 is written into the memory cell.
pW1 probability that a 1 is written into the memory cell.
pR probability that the memory cell is read.
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2. Fault detection 2. With memory

pR pSN

1

pS0
pRpW1 pS1 pS2
pW1

pW0

pW0

else else else

pS0=1; pS1=0; pS2=0; pSN(1 )=0 ; N=5000;
NA=128; pR = 1 / (2∗NA) ; pW0 = pW1 = 1/ (4∗NA) ;
for n=1:N

p0 = pS0 ∗ (1−pW1) + pS1∗pW0 + pS2∗pW0;
p1 = pS0 ∗ pW1 + pS1∗(1 −pW0−pR) + pS2∗pW1;
p2 = pS1 ∗ pR + pS2∗(1 −pW1+pW0−pR ) ;
pSN = pSN( n ) + pS2 ∗ pR;
zeta = pS2∗pR / (pS0+pS1+pS2 ) ; % FF ra te
pS0 = p0 ; pS1 = p1 ; pS2 = p2 ;

end
plot ( 1 :N, zeta ) ; Avoiding small differences of large numbers:

ζ =
pSN (n+ 1)− pSN (n)

1− pSN (n)
=

pS2 · pR
pS0 + pS1 + pS2

pW... probability that a 0 or 1, respectively is written into the memory cell.
pR probability that the memory cell is read.
ζ MF rate of the fault. Conditional probability that fault is detected if not detected previously.
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2. Fault detection 2. With memory

Example 2.9: MF rate of the DR1 fault

0 1000 2000 3000 4000

0

n

3 · 10−4ζi in MF/SR
nI6 · 10−4

The MF rate ζ caused by the fault initially increases with the number of
tests n and than remains constant ζ ≈ 5.7 · 10−4 from nI ? 1000.

For long random tests n ≫ nI , the MF rate of a fault in systems with
memory can usually also be considered constant and the detection
probability can be estimated as for systems without memory:

pi (n) = 1− e−ζi·n (2.9)

pi (n) detection probability of fault i by n tests.
ζi MF rate caused by fault i.
nI number of initialisation steps.
n number of tests, for worst-case estimates without the nI initialisation steps.
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2. Fault detection 3. Actual and model faults

Actual and model faults
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2. Fault detection 3. Actual and model faults

Actual faults and model faults

Ω
Ω

detection set of an actual fault

set of possible input values or
sequences to proof a fault

detection set of a model fault

The faults to be found are unknown at the time of test selection.
Therefore, fault models are used for test selection and estimation
of fault coverage.
A fault model is an algorithm that generates a large number of
model faults from the test object description. Each model fault is a
different small falsification.
The detection set of a fault is the set of inputs with which the fault
is detectable.

Most actual faults share detection constraints and detection sets with
several model faults.
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2. Fault detection 3. Actual and model faults

Targeted tests search

Di

detection set of a
model fault

detection set of an
actual fault

≥1

...

...

≥1
...

...

&

&

Ti.j.1

Ti.1.1

≥1

Tijk test k for model fault j
detects fault i:

Di

P (Ti.j.k) = pij 6= f(k)

M

M

M

P (M) = FCM 6= f(i, j)

p2.6

p2.5

actual fault 2

model fault 6

detection fault i

for model fault j the

found:
wj tests sought are

model fault 5 Ω

Ti.1.w1

Ti.j.wj

For each fault i, the model fault set contains j = 1 to vi similarly
detectable model faults, for each of which k = 1 to wj tests are sought
and found with probability P (M) = FCM.
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2. Fault detection 3. Actual and model faults

Di

≥1

...

...

≥1
...

...

&

&

Ti.j.1

Ti.1.1

≥1

Tijk test k for model fault j
detects fault i:

Di

P (Ti.j.k) = pij 6= f(k)

M

M

M

P (M) = FCM 6= f(i, j)

detection fault i

for model fault j the

found:
wj tests sought are

Ti.1.w1

Ti.j.wj

Tests search is difficult and only successful for FCM model faults (see
sec. 5.2). If one test can be found, with wj times more effort, all wj

tests will be found:

Di =

vi∨
j=1

(( wj∨
k=1

Tijk

)
∧M

)
=

vi∧
j=1

 wj∧
k=1

T̄ijk

 ∧M


pi = P (Di) = 1−

vi∏
j=1

(
1−

(
FCM ·

(
1−

wj∏
j=1

(1− pij)

)))
(10)
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2. Fault detection 3. Actual and model faults

pi = 1−
vi∏
j=1

1−

FCM ·

1−
wj∏
j=1

(1− pij)


Example 2.10: fault oriented test selection
pij = 25%, vi = 5 and all wj = w

pi (w, FCM) w = 1 w = 2 w = 3 w = 4 w = 5

FCM = 90% 72.0% 91.8% 97.5% 99.15% 99.70%
FCM = 95% 74.2% 93.2% 98.1% 99.47% 99.84%

The detection probabilitypi of actual faults depends less on the model
fault coverage FCM, but significantly on the number of tests wj that are
searched for each model fault j.
pi detection probability of fault i.
vi Number of similar detectable model faults for faults i.
FCM fault coverage for model faults.
wj Number of tests for model faults j.
pij probability that a test to proof model fault j also proofs actual fault i.
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2. Fault detection 3. Actual and model faults

Random fault detection

Ω

(l
og
.)

ζ

h(ζM)h(ζ) ≈ h(c · ζM)

(log.)

detection set of an
actual fault

Detection set of a
model fault

ln(c)

Real faults i and their similarly detectable model faults j share
stimulation and observation conditions. This suggests a similar
shape of the MF rate distribution with the same shape factor k.
The ratio of the MF rates of the actual faults to their similarly
detectable model faults tends towards a value

c ≈ ζ
ζM

which can also be smaller or larger than 1.
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2. Fault detection 3. Actual and model faults

(l
og
.)

ζ

h(ζM)h(ζ) ≈ h(c · ζM)

(log.)
ln(c)

For the same effective reference test set length, for which all detectable
faults are removed before random testing, the actual FC tends towards
the model fault coverage of c times the test set length:

FCM (n) = FC (c · n) with c ≈ ζ
ζM

(11)

Random test selection places fewer demands on the fault model and
allows more trustworthy estimates of FC from FCM.
FC fault coverage, percentage of detectable faults.
FCM fault coverage for model faults.
c test number enlargement.
nT number of tests.
ζM Malfunction rate due to modelled faults during test.
ζ malfunction rate during operation.
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2. Fault detection 3. Actual and model faults

Example 2.11: fault coverage random test
An increase from n0 = 100 to n = 104 random tests detects
FCM = 90% of the model faults undetectable with n0 = 100 tests. The
MF rate of undetectable model faults during testing is about twice that
of undetectable actual faults in use.

n0 = 100, n1 = 104, FCM = 90%, c = ζ/ζM = 0.5

a) Form factor k under the assumption of a power function for the
distribution of the MF rate?

b) Expected number of actual faults not detectable with the n1 tests?
c) Expected MF rate after elimination of all detected faults?
d) How much simulation time is required to estimate the fault cover-

age for the effective test number n1, if the fault simulation requires
1 s for a test step?
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2. Fault detection 3. Actual and model faults

n0 = 100, n1 = 104, FCM = 90%, c = ζ/ζM = 0.5

a) Form factor k under the assumption of a power function for the
distribution of the MF rate?

With a power function as the distribution of the MF rate, the expected
number of faults decreases with the form factor as the exponent:

µFNE (n) = µFNE (n0) ·
(

n
n0

)−k
(1.42)

Model fault coverage:

FCM (n) = 1− µFNE(n)
µFNE(n0)

= 1−
(

[c·]n
[c·]n0

)−k

Equation converted according to the form factor k:

k =
ln (1− FCM (n))

ln
(

n
n0

) = − ln (0.1)

ln (100)
= 0.5

FCM fault coverage for model faults.
µFNE expected number of not eliminated faults.
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2. Fault detection 3. Actual and model faults

n0 = 100, n1 = 104, FCM = 90%, c = ζ/ζM = 0.5

b) Expected number of actual faults not detectable with the n1 tests?

Assuming that the distribution of MF rate for actual and model faults is
a power function with the same form factor and the 100 detectable
faults is the difference of the expected number of undetectable faults
for test length n0 and n1:

µFNE (n0)− µFNE (n1) = µFNE (n1) ·
((

n1
n0

)k
− 1

)
= 100

µFNE (n1) =
100(

n
n0

)k
− 1

= 11.1

µFNE expected number of not eliminated faults.
n0, n1 number of tests with known malfunction rate or expected number of faults, respectively.
k form factor of the distribution of the malfunction rate (0 < k < 1).
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2. Fault detection 3. Actual and model faults

n0 = 100, n1 = 104, FCM = 90%, c = ζ/ζM = 0.5

c) Expected MF rate after elimination of all detected faults?

MF rate due to the non-eliminated faults:
ζF (n) = k·µFNE(n)

n
(1.43)

With the form factor from exercise part a, the expected number of faults
from exercise part b and the test set length n1:

ζF = 0,5·11,1
104 = 5.56 · 10−4

[
DS
MF

]

FC fault coverage, percentage of detectable faults.
FCM fault coverage for model faults.
c test number enlargement.
nT number of tests.
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2. Fault detection 3. Actual and model faults

n0 = 100, n1 = 104, FCM = 90%, c = ζ/ζM = 0.5

d) How much simulation time is required to estimate the fault cover-
age for the effective test number n1, if the fault simulation requires
1 s for a test step?

For the same effective reference test set length, the actual FC tends
towards the model fault coverage of c times the test set length:

FCM (n) ≈ FC (c · n) (2.11)
Number of tests to be simulated:

nTS = c · n1 == 5, 000

tSim = nTS · 1 s = 5, 000 s = 1.4 h

nTS number of tests to be simulated.
n1 effective number of tests.
c test number enlargement.
tSim simulation time.
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2. Fault detection 4. Summary

Summary
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2. Fault detection 4. Summary

Fault detection probability random test

Fault detection probability as a function of the number of tests n
for systems without memory for ζi ≤ 0,1:

pi (n) = 1− e−ζi·n (2.9)

The MF rate ζi of the fault depends on the operation profile.
Unless otherwise specified, let the operation profile for the test be
constant and equal to the one in use.

The relationship usually also applies to systems with memory if
the number of tests is n ≫ nI.
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2. Fault detection 4. Summary

Actual fault and model fault coverages
Targeted tests search. If it is possible to find one test for a model fault,
search will be mostly also successful for a total of wj ≥ 1 tests per fault:

pi = 1−∏vi
j=1 (1− (FCM · (1− (1− pij)

w
))) (2.10)

Requires a fault model that generates vi ≥ 1 model faults for each
fault, which detection implies detection of fault i with a high
probability pij .
FC depends more on the number of tests wj sought per model
fault than on FCM.

Random test: The model faults are only used to estimate the fault
coverage, but not for the test selection:

FCM (n) ≈ FC (c · n) (2.11)

Requires only a similar MF density shape for real and model fault.
Allows much more trustworthy estimations compared to using the
model faults for tests search.
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3. Fault elimination

Fault elimination
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3. Fault elimination

Experimental repair (see slide 1.96)

undo the change

experimental repair

test repetition

problem observed

hypothesis of possible causes

fault still

fault is considered
to be eliminated

present

Iteration of removal attempts for hypothetical faults and success
control by test repetition.
Removes all faults detectable by the test.
To avoid the emergence of new faults during repair undo changes
after unsuccessful repair attempts.

Presupposition: deterministic behaviour, so that the elimination result
can be checked by test repetition (see sec. 1.5.2).
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3. Fault elimination

Fault elimination as a Markov chain

1− pFD

pFD

pFP
detected
fault not

fault detected

defective

*
1− pFP

test
fault-free
object

fault-free
object

defective
object

test
defective

repair object

unclassified
object

fault-free

replace-
ment

A fault i
is present with probability pFP and
is detected with probability pFD.

Two approaches are to be distinguished for fault elimination:
replacement of the entire system and
repair, e.g. by replacing a faulty subsystems.

pFD probability of fault detection.
pFP probability that fault is present.
∗ additional edge for phantom defect from "test defect-free object" to repair or replacement.
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3. Fault elimination

Replacement or repair
When replacing detected defective systems with spare parts from the
same manufacturing process

original and spare parts have the same yield Y and
the original part must be replaced on average µR times:

µR =
1

Y
− 1 (12)

From this model-based extrapolation it can be derived that the
production costs per system sold are ≈ 1

Y times as high as the costs
for the production of a single system. On the other hand, replacement
saves the costs of design for testing and repair, localisation and
stockpiling of repair capacities.

Replacement is the most cost-effective way of eliminating faults at high
yields and priceless for yields Y ≪ 50%.
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3. Fault elimination 1. Replacement

Replacement
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3. Fault elimination 1. Replacement

Fault elimination by replacement

faultless
object

faulty
object

test
faultless
Objekt

test
faulty
object

1−DC

fehlerfrei

fault detected

faulty

µR+= ..
edge counter

DLM

DC

1−DLMclassified
object un-

fault not
detected

replace

Original objects and replacements are defective with probability DLM.
Each step turns an unclassified object with probability

1−DLM into a fault-free object or with probabilty
DLM · (1−DC) ino an unrecognised defective object.
Otherwise it remains unclassified.

DLM defect level after manufacturing.
DC defect coverage, percentage of detectable defective devices.
µR Edge counter for the expected number of replacements.
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3. Fault elimination 1. Replacement

Simplified Markov chain

1−DLM

µR += pS0 ·DLM ·DC

object un-
classified

S0

DLM ·DC
DLM · (1−DC)

classified as faultless

1

1

faultless

faulty
object

object
S1

S2

After replacing all recognisably defective objects∗:
lim

n→∞
(pS0) = lim

n→∞
(DLM ·DC)n = 0

lim
n→∞

(pS1) = (1−DLM) ·
∞∑

n=0

(DLM ·DC)n =
1−DLM

1−DLM ·DC

lim
n→∞

(pS2) = 1− lim
n→∞

(pS1) = 1− 1−DLM

1−DLM ·DC
=

DLM · (1−DC)

1−DLM ·DC

DC
defect
coverage,
per-
cent-
age
of
de-
tectable
de-
fec-
tive
de-
vices.

summation formula of the geometric series:
∑∞

n=0 a0 · qn =
a0
1−q .

DLM defect level after manufacturing.
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3. Fault elimination 1. Replacement

Estimable parameters
1−DLM

µR += pS0 ·DLM ·DC

object un-
classified

S0

DLM ·DC
DLM · (1−DC)

classified as faultless

1

1

faultless

faulty
object

object
S1

S2

Defect level after sorting out as probability limn→∞ (pS2) that an object
identified as defect-free is defective

DLR = DLM·(1−DC)
1−DLM·DC

(1.68)
was derived on slide set 1 by subtracting the number of detected
defective products from the number of defective and all products in the
numerator and denominator.

DC defect coverage, percentage of detectable defective devices.
DLM defect level after manufacturing.
DLR defect level after replacement of detected defective parts.
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3. Fault elimination 1. Replacement
Yield, replacement, defect level

1−DLM

µR += pS0 ·DLM ·DC

object un-
classified

S0

DLM ·DC
DLM · (1−DC)

classified as faultless

1

1

faultless

faulty
object

object
S1

S2

Probability that a defective object will not be replaced:

pNR =
DLR

DLM
=

DLM·(1−DC)
1−DLM·DC

DLM
=

(1−DC)

1−DLM ·DC

Expected number of replacements per object found to be good:

µR =
∞∑

n=1

(DL ·DC)n =
DLM ·DC

1−DLM ·DC
(13)

The expected number of objects to be produced per object found to be
good is µR + 1 and equal to the reciprocal of the yield (see eq. 2.12):

Y =
1

µR + 1
=

1
DLM·DC

1−DLM·DC
+ 1

= 1−DL ·DC
√
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3. Fault elimination 1. Replacement

Example 2.12: Yield, replacement, defect level
Circuit yields Y : 10%, 30%, 50%, 80% and 90%, Defect coverage DC:
90%, 99% and 99.9%.
a) What is the expected number of substitutions µR, until a circuit

passes the test?
b) What is the defect level DLM of the circuits after manufacturing

before sorting out?
c) What is the defect level DLR after sorting out the detected defec-

tive circuits
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3. Fault elimination 1. Replacement

Circuit yields Y : 10%, 30%, 50%, 80% and 90%, Defect coverage DC:
90%, 99% and 99.9%.
a) What is the expected number of substitutions µR, until a circuit

passes the test?

Expected number of replacements per good circuit:
µR = 1

Y − 1 (2.12)

Y 10% 30% 50% 80% 90%
µR = 1

Y
− 1 9 2.33 1 0.25 0,11
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3. Fault elimination 1. Replacement

Circuit yields Y : 10%, 30%, 50%, 80% and 90%, Defect coverage DC:
90%, 99% and 99.9%.
b) What is the defect level DLM of the circuits after manufacturing

before sorting out?

Convert equation
Y = 1−DLM ·DC (1.67)

according to the defect level DLM before replacement of detected
defective parts:

DLM = 1−Y
DC

Y = 10% ...=30% ...=50% ...=80% ...=90%
90% 100.0% 77.8% 55.6% 22.2% 11.1%
99% 90.9% 70.7% 50.50% 20.2% 10.1%
99,9% 90.1% 70.1% 50.1% 20.0% 10.0%

For Y = 1−DC all manufactured circuits are defective and
Y < 1−DC is not possible according to eq. 1.67.
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3. Fault elimination 1. Replacement

Circuit yields Y : 10%, 30%, 50%, 80% and 90%, Defect coverage DC:
90%, 99% and 99.9%.
c) What is the defect level DLR after sorting out the detected de-

fective circuits for the defect level before sorting out DL = 100%,
90%, 70%, 50%, 20% und 10% and with the values of defect cover-
age DC from above?

DLR = DLM·(1−DC)
1−DLM·DC

(1.68)

DC = 90% DC = 99% DC = 99,9%

DLM = 100% 100% 100% 100%
DLM = 90% 47.4% 8.26% 8920 dpm
DLM = 70% 18.9% 2.28% 2328 dpm
DLM = 50% 9.09% 9901 dpm 999 dpm
DLM = 20% 2.43% 2494 dpm 250 dpm
DLM = 10% 1.10% 1110 dpm 111 dpm
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3. Fault elimination 1. Replacement

Circuit yields Y : 10%, 30%, 50%, 80% and 90%, Defect coverage DC:
90%, 99% and 99.9%.
c) What is the defect level DLR after sorting out the detected defec-

tive circuits ...

DC = 90% DC = 99% DC = 99,9%

DLM = 100% 100% 100% 100%
DLM = 90% 47.4% 8.26% 8920 dpm
DLM = 70% 18.9% 2.28% 2328 dpm
DLM = 50% 9.09% 9901 dpm 999 dpm
DLM = 20% 2.43% 2494 dpm 250 dpm
DLM = 10% 1.10% 1110 dpm 111 dpm

For the defect level of tested circuits DLR one finds in the literature the
order of magnitude 100 ... 1000 dpm. For Y = 30% . . . 80%, this results
in defect coverages of DC ≈ 99.9%.

Are the defect coverages really that high or
are the literature data on the defect percentage too low?

These questions will continue to be with us.
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3. Fault elimination 2. Repair

Repair
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3. Fault elimination 2. Repair

Fault elimination by repair
In the case of a repair, only the parts of the overall system diagnosed
as defective are replaced or modified. Subsystems to be replaced:

are cheaper than complete systems that need to be replaced and
have a smaller defect level (fewer multiple replacements).

In exchange, repair requires additional effort:
Repair-friendly design (modular interchangeability),
fault localisation and
Organisational units + personnel capacity for repair (for software
for maintenance).

Unprofitable for systems with yield Y > 50.

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 75/107



3. Fault elimination 2. Repair

Elimination iteration for one fault

faultless
object

object
faultytest of

a faulty
object

1− pFD
Fault detected

erkannt

faultless
object

Fehler nicht

faultless
1− pFP

faulty

pFP

1− pR

else

µR += ..
repair

fault eliminated

pR
pFD

system with
0 or 1 fault

test of a

For a detected fault, repairs are carried out until the visible faulty
behaviour has been eliminated.
With each repair attempt, with little probability, new faults are
created.

pR probability of repair success.
µR expected number of repair attempts per fault.
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3. Fault elimination 2. Repair

Improved Markov chain per fault

detectable
fault not

eliminated
faulttest

ηFR+= pS2 · ξR

pFD1− pFD

1

pR

1− pR1

S0 S3

S2 repair
S1

The probability of eliminating an existing fault is equal to the probability
of detection∗:

pFE = pZ3 = pFD · pR ·
∞∑

n=0

(1− pR)
n = pFD

All detectable faults are eliminated.

pFD probability of fault detection.
pR probability of repair success.
pSi Probability that the Markov chain is in state Si.
pFE probability of fault elimination.
∗ summation formula of the geometric series:

∑∞
n=0 a0 · qn =

a0
1−q .
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3. Fault elimination 2. Repair

detectable
fault not

eliminated
faulttest

ηFR+= pS2 · ξR

pFD1− pFD

1

pR

1− pR1

S0 S3

S2 repair
S1

Expected number of new emerging faults per fault present at the
beginning∗:

ηFR = pFD · ξR ·
∞∑

n=0

(1− pR)
n =

pFD · ξR
pR

(14)

ηFR Expected number of faults emerging during repair per originally occurring fault .
pFD probability of fault detection.
pR probability of repair success.
ξR fault emerging rate in faults per repair attempt.
∗ summation formula of the geometric series:

∑∞
n=0 a0 · qn =

a0
1−q .
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3. Fault elimination 2. Repair

Multiple faults from the creation processes

S0

µF = µFC (fault count from the originating processes)

fault not
detectable

S1
pFD1− pFD fault

eliminated
S3

µF+= ηFR (increment by the fault count due to repair)

repeat for all faults (origin and repair)

One Markov chain for each fault to be eliminated.
Any detectable fault is eliminated: pFE = pFD

Total number of emerging faults for ηFR < 1:

µFCR = µFCP · (1 + ηFR · (1 + ηFR · (1 + . . .))) = µFCP ·
∞∑
i=0

(ηFR)
i

µFCR expected number of faults from creation and repair processes.
µFCP expected number of faults from creation process.
ηFR Expected number of faults emerging during repair per originally occurring fault .

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 79/107



3. Fault elimination 2. Repair
Continuation from previous slide ...

µFCR = µEF ·
∞∑
i=0

(ηFR)
i =

µFCP

1− ηFR

Expected number of faults not eliminated:

µFNE = µFCR · (1− pFD) =
(1− pFD) · µFCP

1− ηFR
(15)

=
(1− pFD) · µEF

1− pFD·ξR
pR

=
(1− pFD) · pR · µFCP

pR − pFD · ξR
(16)

µFCR expected number of faults from creation and repair processes.
µFNE expected number of not eliminated faults.
pFD probability of fault detection.
µFCP expected number of faults from creation process.
ηFR Expected number of faults emerging during repair per originally occurring fault .
pR probability of repair success.
ξR fault emerging rate in faults per repair attempt.

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 80/107



3. Fault elimination 2. Repair
µFNE = (1−pFD)·µFCP

1−ηFR
(2.15)

An important measure of the quality of a repair process is the expected
number of new faults per eliminated fault µFR:

1 µFR < 0,1: Desired case, µFNE increases proportionally by µFR:

µFNE =
(1− pFD) · µFCP · (1 + µFR)

(1− µFR) · (1 + µFR)
=

(1− pFD) · µFCP · (1 + µFR)

1− µ2
FR

≈ (1− pFD) · µFCP · (1 + µFR)

2 µFR = pFD: Elimination of all detectable faults without reducing the
expected total fault count:

µFNE =
(1− pFD) · µFCP

(1− µFR)
= µFCP

3 1 > µFR > pR: Despite the elimination of all detectable faults, the
repair process increases the expected fault count.

4 µFR > 1: The repair goal, the elimination of all detectable faults, is
not achievable.

A reasonable repair process should aim for µFR < 0.1.
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3. Fault elimination 2. Repair

Example 2.13: Good student programming performance
Low fault programming, lets say µFCP = 5 faults (without syntax
faults).
Thorough test, e.g. pFD = 50% with n = 10 tests.
Successful fault elimination, e.g. 2 to 3 repair attempts per fault
(pR = 40%), one emerging fault per 10 repair attempts (ξR = 0.1).
Form factor of the MF rate distribution k = 0.5.

Gl. 2.14 ηFR = pFD·ξR
pR

= 50%·0.1
40% = 0.12

Gl. 2.15 µFNE = (1−pFD)·µFCP

1−µFR
= (1−50%)·5

1−0.12 = 3.75

Gl. 1.43 ζF ≈ k·µFNE

n = 0.5·3.75
10 = 0.1875

On average 2.5 original plus 1.25 undetectable defects arising
during repair.
A further random test will not fail with a probability of 1− ζ > 80%.

Good enough for a course credit.
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3. Fault elimination 2. Repair

Example 2.14: Poor student programming performance
More design faults, e.g. µFCP = 7 (without syntax faults).
Less tests, e.g. pFD = 30% with n = 5 tests.
On average 3 to 4 repair attempts per fault (pR = 30%) and due to
the lack of rebuilding after unsuccessful repair attempts only
ξR = 0.5.
Form factor of the MF rate distribution k = 0.5.

Gl. 2.14 ηFR = pFD·ξR
pR

= 0.3·50%
40% = 0.375

Gl. 2.15 µFNE = (1−pFD)·µFCP

1−µFR
= (1−30%)·7

1−0.375 = 7.9

Gl. 1.43 ζ ≈ k·µFNE

n = 0.5·7.9
5 = 0.8

On average 4.9 original faults plus 2.9 undetectable faults
resulting from the repair.
A further random test will fail with a probability of ζ > 80%.

How to pass the exam? Doubling the number of tests to n = 10 tests.
Deconstruction to halve ξR. ...
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3. Fault elimination 3. Maturation processes

Maturation processes
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3. Fault elimination 3. Maturation processes

Elimination of faults in a maturing process

removal

check whether successful

update with one fault less

search for a test

use system spot a problem

change request

check whether MF

userr

manufacturer

1 In case of a suspected malfunction, the user makes a change
request. Alternatively, the system sends a MF report. MF reports
are collected in drawers of suspected same cause.

2 The manufacturer favours for elimination drawers that suggest
faults with frequent serious MF.

3 Search for tests that stimulate the MFs in a reproducible way.
4 Experimental repair. Installation of updates.
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3. Fault elimination 3. Maturation processes

Modelling as Markov chain

+=

1

1
pS4 · ξR

1− pR

pCR pM√ pRpMT

ηFR

pFD

else else else else

pS0

check whether MF

S1: spot a problem

S2: change request

pS1 pS2 pS3 pS4 pS5

S0: occurence of a MF

S6: no elimination

S5: update with less faults

S4: repair attempt

check success S3: search for a test

manufacturer

user

pSi Probability that the Markov chain is in state Si.
ηFR Expected number of faults emerging during repair per originally occurring fault .
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3. Fault elimination 3. Maturation processes

+=

1

1
pS4 · ξR

1− pR

pCR pM√ pRpMT

ηFR

pFD

else else else else

pS0 pS1 pS2 pS3 pS4 pS5

S6: no elimination

Fault elimination probability in the case of an MF:
pFE = pFD · pCR · pM√ · pMT (17)

The edge counter µFR is used to estimate the expected number of new
faults that arise during the repair process. For faults created during
repair, the maturing time counts from emergence.

pFE probability of fault elimination.
pFD probability of fault detection.
pCR probability of a change request being made for an observed MF.
pM

√ probability that manufacturer can reconstruct the MF.
pMT probability that the manufacturer will find a test for fault detection.
pR probability of repair success.
ηFR Expected number of faults emerging during repair per originally occurring fault .
ξR fault emerging rate in faults per repair attempt.
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3. Fault elimination 3. Maturation processes

Newly created faults per existing fault

+=

1

1
pS4 · ξR

1− pR

pCR pM√ pRpMT

ηFR

pFD

else else else else

pS0 pS1 pS2 pS3 pS4 pS5

S6: no elimination

ηFR = pFE · ξR ·
∞∑

n=0

(1− pR)
n =

pFE · ξR
pR

(18)

With the elimination of each newly created fault, on average ηFR new
faults are created with the elimination of which ηFR new faults are
created:

ηFRR = ηFR + η2FR + η3FR + . . . = ηFR

1−ηFR
(19)

ηFR Expected number of faults emerging during repair per originally occurring fault .
pFE probability of fault elimination.
ξR fault emerging rate in faults per repair attempt.
pR probability of repair success.
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3. Fault elimination 3. Maturation processes

Decrease in the number of errors and the MF rate
Decrease in the expected number of faults not eliminated without new
fault occurrence (see sec. 1.4.6):

µFNE (nM) = µFNE (nM0) ·
(

nM

nM0

)−k
(1.57)

with
nM = nMV · u+ nMR (1.56)

µFNE (u) = µFNE (nM0) ·
(

nMV·u+nMR

nMR

)−k

(20)

µFNE expected number of not eliminated faults.
nM effective number of services, for which all detected faults are eliminated.
nMR Effective number of tests before the first and each subsequent version release.
k form factor of the distribution of the malfunction rate (0 < k < 1).
nMV additional effective number of tests per version release interval.
u version number of the maturing object.
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3. Fault elimination 3. Maturation processes
The first and each improved version is only released after passing all
nM0 manufacturer tests without MF. Effective test set length in version
u for faults from version v:

nM (u, v) = nMR + (u− v) · nMV (21)

The detection probability from the origin version v to the use version u
results from the reduction of the expected number of faults in eq. 2.20
by increasing the effective test number from nM0 to nM (u, v) in eq.
2.21:

pNE (u, v) =
(

nMR+(u−v)·nMU
nMR

)−k

(22)

The faultsµFNE (0), which were already present in version 0, are
eliminated in the subsequent versions with pNE (u, 0):

µF (u, 0) = µFNE (0) · pNE (u, 0)

nM effective number of services, for which all detected faults are eliminated.
nMR Effective number of tests before the first and each subsequent version release.
u version number of the maturing object.
v Number of the version in which the fault emerged.
nMV additional effective number of tests per version release interval.
pNE (u, v) Probability that a fault from version v is not eliminated in version u.
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3. Fault elimination 3. Maturation processes
In subsequent versions v > 0, a number of faults proportional to the
number of faults removed is added to the usage version u = v, which is
reduced bypNE (u, v) in subsequent versions u > v:

µF (u, v) =


ηFR ·

u∑
i=0

µF (u, i)− µF (u− 1, i)︸ ︷︷ ︸
expected no. of faults eliminated

v = u

µF (u, u) · pNE (v − u) v > u

(23)

Expected total number of faults of each version u:

µFNE (u) =
u∑

i=0

µF (u, i) (24)

µF (u, v) expected number of faults that emerged in version v and are not fixed in version u.
u version number of the maturing object.
v Number of the version in which the fault emerged.
ηFR Expected number of faults emerging during repair per originally occurring fault .
pNE (u, v) Probability that a fault from version v is not eliminated in version u.
µFNE expected number of not eliminated faults.
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3. Fault elimination 3. Maturation processes
Taking into account

ζF (nM) = k·µFNE(nM)
nM

(1.58)

the MF rate in version u due to faults from version v is:
ζF (u, v) = k·µF(u,v)

nM(u,v) (25)

MF rate version u through all faults:

ζF (u) =

u∑
i=0

ζF (u, v) (26)

ζF malfunction rate caused by faults.
nM effective number of services, for which all detected faults are eliminated.
k form factor of the distribution of the malfunction rate (0 < k < 1).
µFNE expected number of not eliminated faults.
ζF (u, v) MF rate in version u caused by faults emerged in version v.
µF (u, v) expected number of faults that emerged in version v and are not fixed in version u.
nM (u, v) effective number of tests version u for faults from version v.
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3. Fault elimination 3. Maturation processes

Example 2.15: Maturation process with newly emerging
faults
Parameter: µFNE (0) = 100, nMR = 105, nMU = 106, ηFR = 0,1, k = 0,4.

a) Expected fault rates µF (u, v) for u = 0 to 5 matured versions per
origin version v and in total

b) MF rates version u by faults from version v and sum

c) Relative increase in the expected number of faults due to the new
faults emerging during elimination.

d) Relative increase in MF rate due to emerging faults.

µFNE expected number of not eliminated faults.
nMR Effective number of tests before the first and each subsequent version release.
nMU effective number of tests in a single update intervall of the maturity process.
ηFR Expected number of faults emerging during repair per originally occurring fault .
k form factor of the distribution of the malfunction rate (0 < k < 1).

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 93/107



3. Fault elimination 3. Maturation processes

Parameter: µFNE (0) = 100, nMR = 105, nMU = 106, ηFR = 0,1, k = 0,4.

a) Expected fault rates µF (u, v) for u = 0 to 5 matured versions per
origin version v and in total

Table µF (u, v) and µFNE (u) for version 1 to 5:
u 0 1 2 3 4 5

v = 0 100 38.32 29.59 25.32 22.64 20.75
v = 1 0 6.17 2.36 1.82 1.56 1.40
v = 2 0 0 1.25 4.80 · 10−1 3.71 · 10−1 3.17 · 10−1

v = 3 0 0 0 5.58 · 10−1 2.14 · 10−1 1.65 · 10−1

v = 4 0 0 0 0 3.40 · 10−1 1.30 · 10−1

v = 5 0 0 0 0 0 2.37 · 10−1

µFNE (u) 100 44.49 33.21 28.18 25.13 22.99

µF (u, v) expected number of faults that emerged in version v and are not fixed in version u.
µFNE expected number of not eliminated faults.
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3. Fault elimination 3. Maturation processes

Parameter: µFNE (0) = 100, nMR = 105, nMU = 106, ηFR = 0,1, k = 0,4.

b) MF rates version u by faults from version v and sum

ζF (u, v) = k · µF(u,v)
nu(u,v)

(2.25)

ζF (u) =
∑u

i=0 ζF (u, v) (2.26)

u 0 1 2 3 4 5
v = 0 4·10−4 1.39·10−5 5.64·10−6 3.27·10−6 2.21·10−6 1.63·10−6

v = 1 0 2.47·10−5 8.59·10−7 3.48·10−7 2.02·10−7 1.36·10−7

v = 2 0 0 5.02·10−6 1.75·10−7 7.07·10−8 4.10·10−8

v = 3 0 0 0 2.23·10−6 7.78·10−8 3.14·10−8

v = 4 0 0 0 0 1.36·10−6 4.73·10−8

v = 5 0 0 0 0 0 9.48·10−7

ζF (u) 4·10−4 3.86·10−5 1.15·10−5 6.02·10−6 3.92 · 10−6 2.83·10−6

µF (u, v) expected number of faults that emerged in version v and are not fixed in version u.
nM (u, v) effective number of tests version u for faults from version v.
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3. Fault elimination 3. Maturation processes

Parameter: µFNE (0) = 100, nMR = 105, nMU = 106, ηFR = 0,1, k = 0,4.

c) Relative increase in the expected number of faults due to the new
faults emerging during elimination.

u 1 2 3 4 5
µFNE(u)
µF(u,0)

1.161 1.122 1.113 1.110 1.108

In comparison, the rate of recursively newly arising faults per
originally existing fault according to the Markov chain

ηFRR = ηFR

1−ηFR
(2.19)

ηFRR = ηFR
1−ηFR

= 0.1
1−0.1

= 0,111

µFNE expected number of not eliminated faults.
µF (u, v) expected number of faults that emerged in version v and are not fixed in version u.
ηFR Expected number of faults emerging during repair per originally occurring fault .
ηFRR new emerging faults per original fault recursive.
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3. Fault elimination 3. Maturation processes

Parameter: µFNE (0) = 100, nMR = 105, nMU = 106, ηFR = 0,1, k = 0,4.

d) Relative increase in MF rate due to emerging faults.

Relative increase in MF rate due to the emergence of new faults:

u 1 2 3 4 5
ζF(u)
ζF(u,0)

2.78 2.04 1.84 1.77 1.74

Significantly dependent on ηFR and nMR. Also, if new faults emerge
during elimination, the MF rate decreases with u−(k+1) for u0 > 1:

ζF (u) = ζF (u0) ·
(

u
u0

)−(k+1)

(27)
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3. Fault elimination 4. Summary

Summary
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3. Fault elimination 4. Summary

F2.3.1 bis F2.3.3 Replacement, repair
A fault elimination iteration with success control, eliminates all
detectable faults.
Fault elimination by replacement:

expected number of replacements per object found to be good:
µR = 1

Y − 1 (2.12)
Defect level after replacement of detected defective units as
before:

DLR = DLM·(1−DC)
1−DLM·DC

(1.68)
Fault elimination by repair:

Expected number of new faults per originally existing fault:
ηFR = pFD·ξR

pR
(2.14)

Expected number of not eliminated faults:
µFNE = (1−pFD)·µFCP

1−ηFR
(2.15)

µFNE = (1−pFD)·pR·µFCP

pR−pFD·ξR (2.16)
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3. Fault elimination 4. Summary

2.3.4 Maturing process
Probability of fault elimination:

pFE = pFD · pCR · pM√ · pMT (2.17)
Expected number of new faults per originally existing fault

ηFR = pFE·ξR
pR

(2.18)
and recursively when eliminating newly created faults

ηFRR = ηFR

1−ηFR
(2.19)

Probability of non-elimination for faults in version u from version v
(0 < v ≤ u):

pNE (u, v) =
(

nM0+(u−v)·nMU

nM0

)−k
(2.22)

Expected number of faults originating from fault elimination in version
v > 0 that are still present in version u ≥ v:

µF (u, v) =

{
ηFR ·∑u

i=0 µF (u, i)− µF (u− 1, i) v = u

µF (u, u) · pNE (v − u) v > u
(2.23)
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3. Fault elimination 4. Summary
Total expected fault count in version u:

µFNE (u) =
∑u

i=0 µF (u, i) (2.24)
MF-rate of version u due to faults from version v:

ζF (u, v) = k · µF(u,v)
nu(u,v)

(2.25)
Total MF rate due to faults in version u:

ζF (u) =
∑u

i=0 ζF (u, v) (2.26)
Decrease in the expected number of faults and MF rate caused by
faults estimated from the example for with growing version number:

ζF (u) = ζF (u0) ·
(

u
u0

)−(k+1)
(2.28)

Resulting increase in reliability:

RMT (u) = RMT (u0) ·
(

u
u0

)k+1

(28)

RMT reliability with malfunction treatment.
u version number of the maturing object.
u0 version number of the maturing object with knows MF rate or reliablity, respectively.
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4. Fault emergence

Fault emergence
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4. Fault emergence

Estimation of the expected fault count

Simple estimation model via metrics:
µFCP = ξ · C (1.73)

Modelling the emergence of good and defective products using
Markov chains.
Modelling of product emergence by Markov chains with edge
counters for effort estimation. Estimation of the expected number
of faults arising from the effort and the proportion of faults not
eliminated from it via (non-) detection probabilities of the tests.

µFCP expected number of faults from creation process.
ξ fault generation rate creation process.
C metric for creation effort or scale.
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4. Fault emergence

Creation processes with checks
Linear sequence of creation steps. If control i detects a fault, the object
is sorted out, otherwise transition to the next step faultless or with
undetected faults:

pS1 pS2 pS3 pPA

pF3 · pD3

pPR

1− pF3

pF3 · (1− pD3)

pF1 · pD1 pF2 · pD2

1− pF1

pF1 · (1− pD1)

1− pF2

pF2 · (1− pD2)

1

1

pSi Probability that the Markov chain is in state Si.
pFi probability that a fault emerges in step i.
pDi Fault detection probability of the check after step i.
pPA Probability that the product is accepted as fault-free.
pPR Probability that the product is rejected as faulty.
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4. Fault emergence
Probability that the object will be accepted as defect-free:

pPA =
3∏

i=1

(1− pDi · pFi)

Probability of creating a defect-free object:

pOK =
3∏

i=1

(1− pFi)

Defect level, counter probability of the conditional probability that a prod-
uct is ok if it is not sorted out:

DLM = 1− P (OK|A) = 1− pOK

pOA
= 1−

3∏

i=1

(
1−pFi

1−pDi·pFi

)

DLM defect level after manufacturing.
A event product accepted as fault-free.
OK event product ok (faultless).
pPR Probability that the product is ok (faultless).
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4. Fault emergence

Linear creation process as a fault tree

&

&

F1

D1

&

&

F2

D2

&

&

F3

D3

≥1

≥1 D|A

OK

R

A

&

Fi

Di

OK

R

A

D|A

in step i

events during
product creation

fault originated

product ok

rejection due
to faults

accepted as
faultless

accepted but
faulty

fault in step
i detected
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4. Fault emergence

Creation processes with backtracks

always

SE

creation
completedS1 – specification, S2 – system design and S3 – coding

Processing stages, e.g. S0 – requirements analysis,

S0 S1 S2 S3
else

(µij , ζij) expected number of faults arising at edge transition(i, j)

expected number of transitions until the next level is reached

(1, 0.5) (1, 1.0) (1, 2.0)

(20, 0.1) (40, 0.1)

(4, 0.1)

(2, 0.1)

(1, 0.1)

(2, 0.1)

(1, 0.1)

(10, 0.1)

(1, 0.1)

(5, 0.1)

The transition probability per edge is the expected number of
transitions divided by the sum of the transition counts of all edges
starting from the same state:

pTij =
µiu∑4

u=0 µiu

Prof. G. Kemnitz · Institute for Computer Science, TU Clausthal (TV_F2_engl.pdf) May 5, 2023 103/107



4. Fault emergence

always

SES0 S1 S2 S3
else

(µij , ζij) expected number of faults arising at edge transition(i, j)

expected number of transitions until the next level is reached

(1, 0.5) (1, 1.0) (1, 2.0)

(20, 0.1) (40, 0.1)

(4, 0.1)

(2, 0.1)

(1, 0.1)

(2, 0.1)

(1, 0.1)

(10, 0.1)

(1, 0.1)

(5, 0.1)

Transition matrix of the Markov chain:
pS0
pS1
pS2
pS4
pSE


n+1

=


5
6

1
12

1
24

1
48

0
1
6

10
12

2
24

2
48

0
0 1

12
20
24

4
48

0
0 0 1

24
40
48

0
0 0 0 1

48
1

 ·


pS0
pS1
pS2
pS4
pSE


n

pSi Probability that the Markov chain is in state Si.
pTij transition probability from state i to state j.
n number of simulation steps.
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4. Fault emergence
Increase of number of undetectable faults per simulation step:

For all edges from state Si to state Sj

µFC+= pSi · pTij · ζij
Simulation example:

214 faults

101 102 103 104

101 102 103 104
0

0,5

1

1

10

pS1

pS2

pS0

pS3

pSE

µFC

100

µFCP expected number of faults from creation process.
pTij transition probability from state i to state j.
ζij expected number of faults emerging during edge transition from state i to state j.
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4. Fault emergence

Increase of the expected number of recourses

always

SE
(1, 2.0)

S0 S1 S2 S3
else

430 expected non-
detectable faults

(1, 0.5) (1, 1.0)

(30, 0.1)(20, 0.1)

(8, 0.1)

(6, 0.1)

(3, 0.1)

(1, 0.1)

(2, 0.1)

(10, 0.1)

(1, 0.1)

(5, 0.1)

A change in the recourse probabilities in stage S3:
pT3.3 : 40

48 → 30
48

pT3.2 : 4
48 → 8

48
pT3.1 : 2

48 → 6
48

pT3.0 : 1
48 → 3

48
µFNE : 214 → 450

roughly doubles the number of faults that arise and also roughly
doubles the effort required to create them. Therefore, in step models,
regressions over several steps should be avoided as far as possible.
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4. Fault emergence

Summary

Simple estimation model via metrics:
µFCP = ξ · C (1.73)

An example of a Markov chain for a creation process to estimate
the probabilities of creating good products, sorted out product and
products with undetectable faults..
An example Markov chain for a step model with fallbacks and
edge counters for estimating the number of arising faults.
Using example simulations, it was shown that small increases in
the depth of fallback cause significant increases in the amount of
work and the number of faults that can be expected to arise.
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