Elektronik II Foliensatz 5: Transistoren

G. Kemnitz

27. Juni 2018

Inhaltsverzeichnis

1	Bip	olartransistor	1
	1.1	Aufbau und Funktion	1
	1.2	Spice-Modell stationär	2
	1.3	Kapazitäten	5
	1.4	Kleinsignalmodell	6
	1.5	Grundschaltungen	9
2	Thy	vristor	20
3	J- u	Ind MesFET	21
	3.1	Aufbau und Funktion	21
	3.2	Spice-Modell	22
	3.3	Kleinsignalmodell	23
	3.4	Grundschaltungen	24
	3.5	Rauschen	27
4	мо	SFET	28
	4.1	Aufbau und Funktion	28
	4.2	Spice-Modell	30
	4.3	Digitale Grundschaltungen	32
	4.4	Latch-Up	33
	4.5	Leistungs-MOSFETs	34
5	IGI	3T	34

1 Bipolartransistor

1.1 Aufbau und Funktion

Aufbau und Betriebsarten

Schichtfolge p-n-p oder n-p-n. Geringe Basisbreite. Emitter ist um Zehnerpotenzen höher als die Basis dotiert. Betriebsarten:

- Normalbetrieb: BE-Übergang Durchlassbereich und BC-Übergang gesperrt.
- Ausgeschaltet: beide Übergänge gesperrt.

- Inversbetrieb: BC-Übergang Durchlassbereich und BE-Übergang gesperrt.
- Übersteuert: BE-Übergang Durchlassbereich und BC-Übergang an der Grenze zum Durchlassbereich.

Transistoreffekt

Ladungsträger diffundieren aufgrund des großen Konzentrationsgefälles in die Basis. Die Basis ist viel kürzer als die Diffusionslänge, so dass fast der komplette Minoritätenüberschuss in der Basis bis zur Kollektorsperrschicht diffundiert und dort abgesaugt (eingesammelt) wird. Der Strom durch Rekombination in der Basis und der von der Basis zum Emitter diffundierenden Ladungsträger wird als Basisstrom nachgeliefert.

1.2 Spice-Modell stationär

Kennlinie ohne Basisweitenmodulation

Der über $U_{\rm BE}$ steuerbare Diffusionsstrom vom Emitter fließt fast zu 100% weiter zum Kollektor:

$$-I_{\rm C} \approx I_{\rm E} = {\rm Is} \cdot \left(e^{\frac{U_{\rm BE}}{{\rm Nf} \cdot U_{\rm T}}} \right)$$

 $(Is - Sättigungsstrom; Nf - BE-Emissionskoeffizient, meist 1; U_T - Temperaturspannung).$ Bei negativer U_{CB} lässt die »Sammlerwirkung« des Kollektors nach, d.h. die vom Emitter in die Basis diffundierenden Ladungsträger füllen das Basisgebiet und rekombinieren spätestens am Basisanschluss.

Basisstrom, Inversbetrieb

An der Basis muss der Bf-te Anteil des Kollektorstroms nachgliefert werden (Bf – Stromverstärkung Normalbetrieb). Der davon Bf-fache Kollektorstrom wird durch eine Stromquelle modelliert.

Wenn Emitter und Kollektor ihre Funktion tauschen (Inversbetrieb), gibt es auch den Transistoreffekt, nur mit geringerer Stromverstärkung Br:

$$I_{B.I} = \frac{Is}{Br} \cdot e^{\frac{U_{BC}}{Nr \cdot U_{T}}}$$
$$I_{E.I} = -Br \cdot I_{B.I}$$

(Nr - BC-Emissionskoeffizient).

Transportmodell

Das Transportmodell fasst die gesteuerten Stromquellen für den Normal- und den Inversbetrieb zu einer Transportquelle zusammen:

$$I_{\rm T} = I_{\rm C.N} - I_{\rm E.I}$$
$$= Bf \cdot I_{\rm B.N} - Br \cdot I_{\rm B.I}$$

(im Normal
betrieb ist $I_{\rm B.I}=0$ und im Invers
betrieb $I_{\rm B.N}=0)$

Das Modell erfasst auch die Strom-Spannnungs-Beziehungen für

- den Übersteuerungsbereich $I_{\text{B.N}} > 0$ und $I_{\text{B.I}} > 0$
- und den Sperrbereich $I_{B,N} = 0$ und $I_{B,I} = 0$.

Stromverstärkung

- Misst man $I_{\rm C}(I_{\rm B})$, erhält man einen nichtlinearen Zusammenhang.
- Für das Verständnis besser $\ln (I_{\rm B} (U_{\rm BE}))$ und $\ln (I_{\rm C} (U_{\rm BE}))$ betrachten. Differenz
 - mittlerer Bereich: ln (Bf), Bf ideale Stromverstärkung.
 - Kleine $I_{\rm C}$: erhöhter Basisstrom durch Rekombinationsströme¹.
 - Großer I_C: verringerter Kollektorstrom durch Hochstromeffekt².

Bereiche der Stromverstärkung

¹Stromanteil durch Rekombination

in der Basis.

 $^{^{2}}$ Halbierung des logarithmischen Anstiegs ab $I_{\rm C}$ > Ikf bzw. im Inversbetrieb $I_{\rm E}$ > Ikr.

Param.	Bezeichnung	default	BC547B	BUV47
Is	Sättigungsstrom Norm.	1 μA	7 fA	974 fA
Bf	ideale Stromverstärkung Normalbetrieb	-	375	95
Nf	Emissionskoeffizient Normbetrieb	1		
Br	ideale Stromverstärkung Inversbetrieb	-	1	21
Ikf	Kniestrom zur starken Injektion	0,082A	15,7A	
	${f Normal betrieb}$			
Ikr	Kniestrom zur starken Inj. Inversb.	_	-	

Spice-Parameter für das Modell bis hierher

 $\rm BC547B$ – npn Kleinsignal transistor; $\rm BUV47$ – npn-Leistung stransistor

Der Early-Effekt (Basisweitenmodulation)

Mit Zunahme von $U_{\rm CB}$ dehnt sich die Sperrschicht in das Basisgebiet aus. Die Basis wird kürzer. Der Anteil der an der Kollektorsperrschicht ankommenden Ladungsträger und der Kollektorstrom nehmen bei gleichem $I_{\rm B}$ mit $U_{\rm CE}$ zu. Empirische Modellierung durch gemeinsamen Schnittpunkt der Verlängerungen aller Kennlinienäste mit der Spannungsachse (Vaf – Early-Spannung):

Nach Strahlensatz gilt:

$$I_{\rm C}\left(U_{\rm CE}\right) = I_{\rm C0} \cdot \left(1 + \frac{U_{\rm CE}}{{\rm Vaf}}\right)$$

Stromgleichungen mit Early-Effekt:

$$I_{\rm C}\left(U_{\rm CE}\right) = I_{\rm C0} \cdot \left(1 + \frac{U_{\rm CE}}{{\rm Vaf}}\right) \text{ mit } I_{\rm C0} = {\rm Is} \cdot \left(e^{\frac{U_{\rm BE}}{{\rm M}^{\rm r} \cdot U_{\rm T}}} - 1\right)$$
$$I_{\rm E.I}\left(U_{\rm CE}\right) = I_{\rm E.I0} \cdot \left(1 + \frac{U_{\rm CE}}{{\rm Vai}}\right) \text{ mit } I_{\rm E.I0} = {\rm Ise} \cdot \left(e^{\frac{U_{\rm BE}}{{\rm M}^{\rm r} \cdot U_{\rm T}}} - 1\right)$$

Param.	Bezeichnung	BC547B	BUV47
Vaf	Early-Spannung Normalbetrieb	$63\mathrm{V}$	190V
Vai	Early-Spannung Inversbetrieb	-	-

Bahnwiderstände

Param.	Bezeichnung	BC547B	BUV47
Rb	Basisbahnwiderstand	10Ω	$0,1\Omega$
Rс	${ m Kollektorbahnwiderstand}$	1Ω	$0,035\Omega$
Re	${f Emitterbahnwiderstand}$		_

1.3 Kapazitäten

Sperrschichtkapazitäten

Beim Bipolartransistor:

- BE-Übergang
- CE-Übergang
- bei integrierten Schaltkreisen Übergang zum Substrat.

Jeder dieser Übergänge hat eine Sperrschichtkapazität. Für den BE-Übergang lautet das Berechnungsmodell:

$$C_{\mathrm{S},\mathrm{E}} = \mathrm{Cje} \cdot \begin{cases} \frac{1}{\left(1 - \frac{U_\mathrm{D}}{V_\mathrm{je}}\right)^{\mathbb{N}\mathrm{je}}} & \text{für } U_\mathrm{D} < \mathrm{Fc} \cdot \mathrm{Vje} \\ \frac{1 - \mathrm{Fc}(1 - \mathbb{M}\mathrm{je}) + \frac{\mathbb{M}\mathrm{je} \cdot U_\mathrm{D}}{V\mathrm{je}}}{(1 - \mathbb{M}\mathrm{je})^{(1 + \mathbb{M}\mathrm{je})}} & \text{für } U_\mathrm{D} \ge \mathrm{Fc} \cdot \mathrm{Vje} \end{cases}$$

Spice	Bezeichnung	BC547B	BUV47
Cje	BE-Kapazität für $U_{\rm D}=0$	11,5 pF	1093 pF
Vje	BE-Diffusionsspannung	0,5 V	0,5 V
Mje	${ m BE-Kapazit}$ ät skoeffizient	0,672	0,333
Cjc	BC-Kapazität für $U_{\rm D}=0$	5,25 pF	364 pF
Vjc	$\operatorname{BC-Diffusions spannung}$	0,315 V	0,333 V
Mjc	BC-Kapazitätskoeffizient	0,333	$0,\!44$
Cjs	CS–Kapazität für $U_{\rm D}=0$	-	-
Vjs	${ m CS-Diffusions spannung}$	-	-
Mjs	${ m CS-Kapazit}$ ätskoeffizient	-	-
Fc	Koeffizient für den Verlauf der Kapazität	0,5	0,5

(BE – Basis-Emitter-Übergang; BC – Basis-Kollektor-Übergang; CS – Kollektor-Substart-Übergang; BC547B – npn Kleinsignaltransistor; BUV47 – npn-Leistungstransistor).

Diffusionskapazitäten

Im Normalbetrieb hat der leitende BE- und im Inversbetrieb der leitende BC-Übergang eine Diffusionsladung $Q_{\rm D}$, die proportional zu Strom und Transitzeit zunimmt. BE-Diffusionsladung und Kapazität im Normalbetrieb:

$$Q_{\text{BE.D}} = \text{Tf} \cdot \text{Bf} \cdot I_{\text{B.N}} = \text{Tf} \cdot \text{Is} \cdot \left(e^{\frac{U_{\text{BE}}}{\text{M} \cdot U_{\text{T}}}} - 1\right)$$
$$C_{\text{BE.D}} = \frac{d Q_{\text{BE.D}}}{d U_{\text{BE}}} = \frac{\text{Tf} \cdot \text{Bf} \cdot I_{\text{B.N}}}{\text{Mf} \cdot U_{\text{T}}}$$

Param.	Bezeichnung	BC547B	BUV47
Nf	Emissionskoeffizient Emitter	1	1,2
Tf	ideale Transitzeit (N)	$0,44\mathrm{ns}$	$21,5 \mathrm{ns}$

Die ideale Transitzeit If gilt nur für kleine Ströme. Für größere Ströme nimmt sie mit dem Strom zu, modelliert durch Xtf, Vtf, ...

$$U_{\rm BC} \begin{pmatrix} \mathbf{X} \\ \mathbf{Z} \\ \mathbf{B} \\ U_{\rm BE} \begin{pmatrix} \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{U}_{\rm E} \end{pmatrix} \end{pmatrix} I_{\rm T} = \mathbf{B} \mathbf{f} \cdot I_{\rm B.N} \\ -\mathbf{B} \mathbf{r} \cdot I_{\rm B.I} \\ \mathbf{F} \mathbf{I}_{\rm E}$$

Vollständiges Transistormodell

(Gummel-Poon-Modell)

Für manuelle Rechnungen zu kompliziert. Praxis:

- Entwurf und Plausibilitätstest mit vereinfachten Modellen.
- Kontrolle mit dem Simulator.

1.4 Kleinsignalmodell

Stationäres Kleinsignalmodell

• Stromverstärkung:
$$\beta = \frac{\partial I_{\rm C}}{\partial I_{\rm B}}\Big|_{\rm A} \approx \text{Bf}$$
 (im optimalen Bereich)

• BE-Widerstand:
$$r_{\rm BE} = \left. \frac{\partial U_{\rm BE}}{\partial I_{\rm B}} \right|_{\rm A} \approx \left. \frac{\mathbb{M} \cdot U_{\rm T}}{I_{\rm B}} \right|_{\rm B}$$

• CE-Widerstand: $r_{\rm CE} = \left. \frac{\partial U_{\rm CE}}{\partial I_{\rm C}} \right|_{\rm A} \approx \frac{v_{\rm af}}{I_{\rm C}}$

(Vaf – Early-Spannung; $\ldots|_A$ – Ableitung im Arbeitspunkt).

Zur Kontrolle

Kleinsignal-BE-Widerstand:

$$\begin{split} I_{\rm B} &= \left. \frac{\mathrm{Is}}{\mathrm{Bf}} \cdot \left(e^{\frac{U_{\rm BE}}{\mathrm{Mf} \cdot U_{\rm T}}} \right) \\ \frac{d\,I_{\rm B}}{d\,U_{\rm BE}} &= \left. \frac{1}{\mathrm{Mf} \cdot U_{\rm T}} \cdot I_{\rm B} \right. \\ r_{\rm BE} &= \left. \frac{d\,U_{\rm BE}}{d\,I_{\rm B}} \right|_{\rm A} = \frac{\mathrm{Mf} \cdot U_{\rm T}}{I_{\rm B}} \end{split}$$

Kleinsignal-CE-Widerstand:

$$\begin{split} I_{\rm C}\left(U_{\rm CE}\right) &= I_{\rm C0} \cdot \left(1 + \frac{U_{\rm CE}}{{\rm Vaf}}\right) \text{ mit } I_{\rm C0} = {\rm Is} \cdot \left(e^{\frac{U_{\rm BE}}{{\rm Vf} \cdot U_{\rm T}}} - 1\right) \\ \frac{d \, I_{\rm C}\left(U_{\rm CE}\right)}{d \, U_{\rm CE}} &= \frac{I_{\rm C0}}{{\rm Vaf}} \\ r_{\rm CE} &= \frac{d \, U_{\rm CE}}{d \, I_{\rm C}} \bigg|_{\rm A} = \frac{{\rm Vaf}}{I_{\rm C0}} \end{split}$$

Parameterbestimmung mit Simulationsart ».tf«

Die Ausgangsimpedanz bei Spannungsquelle am Ausgang nur mit »Rückwärtssimulation« bestimmbar.

Dynamisches Kleinsignalmodell im Frequenzbereich

Ergänzung der Sperrschicht- und Diffusionskapazitäten:

• Diffusions- plus Sperrschichtkapazität des BE-Übergangs:

$$C_{\rm BE} = C_{\rm BE,D} + C_{\rm BE,S} \approx \frac{\mathrm{Tf} \cdot \mathrm{Bf} \cdot I_{\rm B,N}}{\mathrm{Nf} \cdot U_{\rm T}} + \mathrm{Cje}^*$$

• Sperrschichtkapazität des CE-Übergangs:

 $C_{\rm CE}\approx {\rm Cjc}^*$

(* vernachlässigte Spannungsabhängigkeit ca. $\pm 50\%$).

Beispielwerte

Param.	Bezeichnung	BC547B	BUV47
Tf	ideale Transitzeit Normalbetr.	$0,44\mathrm{ns}$	$21,5\mathrm{ns}$
Cje	BE-Kapazität für $U_{\rm BE}=0$	$11,5 \mathrm{pF}$	1093 pF
Cjc	BC-Kapazität für $U_{\rm CB} = 0$	5,25 pF	364 pF

BE-Diffusionskapazität (BC547B (Bf = 294; Ne = 1,54):

$$C_{\mathrm{BE.D}} pprox rac{\mathrm{Tf} \cdot \mathrm{Bf} \cdot I_{\mathrm{B.N}}}{\mathrm{Ne} \cdot U_{\mathrm{T}}} = rac{\mathrm{Tf} \cdot \mathrm{Bf}}{r_{\mathrm{BE}}}$$

IB	10 nA	100 nA	1 μA	10 µA	100 µA
$r_{\rm BE}$	$4 \mathrm{M}\Omega$	$400 \text{ k}\Omega$	$40 \mathrm{k}\Omega$	$4 \mathrm{k}\Omega$	400Ω
$C_{\rm BE.D}$	$0,03\mathrm{pF}$	$0,3\mathrm{pF}$	$3\mathrm{pF}$	$30\mathrm{pF}$	$300\mathrm{pF}$
		Cio	In <	10 <i>u</i> A	

 $C_{\rm BE} \approx \begin{cases} {\rm Cje} & I_{\rm B} < 10\,\mu{\rm A} \\ \frac{{\rm Tf}\cdot{\rm Bf}\cdot I_{\rm B.N}}{{\rm Ne}\cdot U_{\rm T}} & {\rm sonst} \end{cases}$

Übergangs- und Transitfrequenz Stromverstärkung

Testschaltung:

Kleinsignalersatzschaltung für f > 0 in kleine $I_{\rm B}{}^3$:

- Wegen $\underline{U}_{\text{RCE}} = 0$ kann r_{CE} weggelassen werden.
- $C_{\rm BE} + C_{\rm BC}$ durch Cje + Cjc annähern.

$$\begin{array}{c}
 B \\
 \hline \underline{I}_{B} \\
 \hline$$

Nach Stromteilerregel:

$$\underline{I}_{\mathrm{B}}' = \underline{I}_{\mathrm{B}} \cdot \frac{r_{\mathrm{BE}} \parallel \frac{1}{j\omega \cdot (\mathtt{Cje+Cjc})}}{r_{\mathrm{BE}}} = \frac{\underline{I}_{\mathrm{B}}}{1 + j\omega \cdot r_{\mathrm{BE}} \cdot (\mathtt{Cje+Cjc})}$$

Stromverstärkung:

$$\underline{\beta} = \frac{\underline{I}_{\rm C}}{\underline{I}_{\rm B}} = \frac{\beta_0}{1 + j\omega \cdot r_{\rm BE} \cdot (\text{Cje} + \text{Cjc})} = \frac{\beta_0}{1 + j \cdot \frac{f}{f_0}}$$

Übergangsfrequenz (Imaginär- gleich Realteil):

$$f_0 = \frac{1}{2\pi \cdot r_{\rm BE} \cdot (\text{Cje} + \text{Cjc})}$$

Transitfrequenz (Verstärkungsabfall auf 0 dB): $f_{\rm T} = \beta_0 \cdot f_0$

³Vernachlässigung der BE-Diffusionskapazität.

$$f_0 = \frac{1}{2\pi \cdot r_{\rm BE} \cdot (\rm Cje + \rm Cjc)}$$

Die Sperrschichtkapazitäten hängen nur wenig von den Spannungen und Strömen im Arbeitspunkt ab, der Basis-Emitterwiderstand jedoch erheblich:

$$r_{\rm BE}\approx \frac{{\rm Ne}\cdot U_{\rm T}}{I_{\rm B.A}}$$

 $(I_{\text{B},\text{A}} - \text{Basisstrom im Arbeitspunkt}; U_{\text{T}} = \frac{k_{\text{B}} \cdot T}{q} - \text{Temperaturspannung}; T - \text{Temperatur in K}).$ Abhängigkeit der Übergangsfrequenz vom Arbeitspunkt:

$$f_0 = \frac{I_{\rm B.A}}{2\pi \cdot \text{Ne} \cdot U_{\rm T} \cdot (\text{Cje} + \text{Cjc})}$$

Die Übergangfrequenz nimmt überschlagsweise proportional mit dem Basisstrom im Arbeitspunkt zu und mit der Temperatur ab.

Die weniger als proportionale Zunahme liegt am zunehmenden Einfluss der Diffusionskapazität des BE-Übergangs, die proportional mit $I_{B,A}$ zunimmt.

1.5 Grundschaltungen

Grundschaltungen

Drei Anschlüsse, einer ist Eingang, einer Ausgang und einer Bezugspotential für beide. Der gemeinsame Anschluss gibt der Grundschaltung den den Namen:

Kleinsignalverhalten mit dem Transistor im Normalbetrieb:

- Emitterschaltung: Strom- und Spannungsverstärkung $\gg 1$.
- Kollektorschaltung: Spannungsverstärkung $\approx 1.$ Stromverstärkung $\gg 1.$ Sehr hoher Eingangswiderstand.
- Basisschaltung: Spannungsverstärkung $\gg 1.$ Stromverstärkung $\approx 1.$ Bandbreite gleich Transitfrequenz der Stromverstärkung.

Emitterschaltung

Simulation der Übertragungsfunktion

Parameter der Transferfunktion mit ».
tf V(a) Ve« für $U_{\rm g}=670\,{\rm mV}:$

AC-Ersatzschaltung

Ablesbare Parameter der Transferfunktion:

$$\begin{split} r_{\mathrm{e}} &= \left. \frac{u_{\mathrm{g}}}{i_{\mathrm{B}}} \right|_{i_{\mathrm{a}=0}} &= R_{\mathrm{g}} + r_{\mathrm{BE}} \\ r_{\mathrm{a}} &= \left. \frac{u_{\mathrm{a}}}{i_{\mathrm{a}}} \right|_{u_{\mathrm{g}=0}} &= R_{\mathrm{C}} \parallel r_{\mathrm{CE}} \\ v_{\mathrm{u}} &= \left. \frac{u_{\mathrm{a}}}{u_{\mathrm{g}}} \right|_{i_{\mathrm{a}=0}} &= -\beta \cdot \frac{r_{\mathrm{a}}}{r_{\mathrm{e}}} \end{split}$$

 $U_{\rm V}$

Klirrfaktor durch die Nichtlinearität

• Klirrfaktor: 8,77%

Stromgegenkopplung

- Subtraktion einer zum Kollektorstrom proportionalen Spannung von der Eingangsspannung.
- Verringert und linearisiert die Verstärkung auf $v_{\rm u} \approx -\frac{R_{\rm C}}{R_{\rm E}}$.
- Mindert den Einfluss der Streuung von β und der Temperatur auf die Funktion der Schaltung.

(*gleiche Amplitude der Ausgangsspannung; $U_{g,A} - U_{gA}$ im Arbeitspunkt). Stromgegenkopplung verringert den Bereich der Ausgangsspannung, die Verstärkung, den Klirrfaktor, die Parameterabhängigkeit des Arbeitspunkts, erhöht den Eingangswiderstand und linearisiert.

AC – Emitterschaltung mit Stromgegenkopplung

$$v_{\rm u} = \left. \frac{u_{\rm a}}{u_{\rm g}} \right|_{i_{\rm a}=0} = -\beta \cdot \frac{r_{\rm a}}{r_{\rm e}} \approx -\frac{R_{\rm C}}{R_{\rm E}}$$

Emitterschaltung mit Spannungsgegenkopplung

Rückführung der Ausgangsspannung auf die Basis:

$$\begin{split} \frac{U_{\rm g} - U_{\rm BE}}{R_{\rm g}} + \frac{U_{\rm a} - U_{\rm BE}}{R_{\rm B}} &= I_{\rm B} = \frac{I_{\rm C}}{\beta} \\ & \frac{U_{\rm V} - U_{\rm a}}{R_{\rm C}} &= \frac{U_{\rm a} - U_{\rm BE}}{R_{\rm B}} + I_{\rm C} \\ & U_{\rm a} &\approx \frac{U_{\rm V} \cdot R_{\rm B}}{\beta \cdot R_{\rm C}} + U_{\rm BE} \cdot \left(1 + \frac{R_{\rm B}}{R_{\rm g}}\right) - \frac{R_{\rm B}}{R_{\rm g}} \cdot U_{\rm g} \end{split}$$

(*Amplitude der Ausgan
ngsspannung 2 V). Spannungsgegenkopplung verringert wie die Stromgegenkopplung die Verstärkung und den Klirrfaktor. Im Gegensatz zur Stromgegenkopplung verringern sich der Ein- und Ausgangswiderstand und $U_{\rm g.A.}$

AC – Emitterschaltung, Spannungsgegenkopplung

Kollektorschaltung

- Eingabe an der Basis,
- Ausgabe am Emitter,
- gemeinsamer Anschluss Kollektor.

Eine Kollektorschaltung hat Verstärkung eins, einen sehr hohen Eingangs- und einen geringen Ausgangswiderstand. Robust gegen Parameterstreuungen und kaum Klirrfaktor. Anwendung als Impedanzwandler und Trennverstärker⁴.

⁴Z.B. zwischen Filterstufen.

AC - Kollektorschaltung

 $(i_{\mathrm{B}} = \frac{u_{\mathrm{g}}}{r_{\mathrm{e}}}; u_{\mathrm{a}} = (1 + \beta) \cdot (R_{\mathrm{E}} \parallel r_{\mathrm{CE}}) \cdot i_{\mathrm{B}})$

Basisschaltung

- Eingabe am Emitter,
- Ausgabe am Kollektor,
- gemeinsamer Anschluss Basis.

Eine Basisschaltung hat eine Spannungs-, aber keine Stromverstärkung. Die Signalquelle muss niederohmig sein. Die Verstärkung ist $v_{\rm u} \approx \frac{R_{\rm C}}{R_{\rm g}}$. Verzerrung wie bei einer Emitterschaltungen mit Stromgegenkopplung.

AC – Basisschaltung

$$\begin{array}{c|c} R_{\rm g} & & i_{\rm E} & i_{\rm a} \\ U_{\rm g} & & & \\ U_{\rm g} & & & \\ U_{\rm g} & & & \\ U_{\rm g} & & \\ U_{\rm V} & & \\ U_{\rm V} & & \\ U_{\rm V} & & \\ U_{\rm g} & &$$

Übergangsfrequenz der Spannungsverstärkung

Transistorersatzschaltung mit BE- und BC-Kapazität:

$$B \xrightarrow{\underline{I}_{B}} C_{BC} \xrightarrow{\underline{U}_{BC}} C_{\underline{I}_{C}}$$

$$\underline{U}_{BE} \left(\begin{array}{c} U_{BE} \\ \hline \\ & U_{BE} \end{array} \right) \xrightarrow{I_{B}} C_{BE} \xrightarrow{I_{B}} \beta_{0} \cdot \underline{I}_{B} \xrightarrow{I} r_{CE} \xrightarrow{U} U_{CE}$$

Die Übergangsfrequenz der Spannungsverstärkung ergibt sich aus der Anordnung der BE- und der CB-Kapazität in der Gesamtersatzschaltung des Verstärkers. Für die Überschläge sollen die BE-Diffusionskapazitäten gegenüber den Sperrschichtkapazitäten vernachlässigt und die Sperrschichtkapazitäten durch die Kapazitätsparameter für Sperrspannung null angenähert werden.

Einfacher Emitterverstärker

- \underline{U}_{g} , R_{g} und r_{BE} bilden ein Zweipol, der sich durch eine Ersatzspanungsquelle $\underline{U}_{g.ers}$ und einen Ersatzwiderstand $R_{g.ers}$ nachbilden lässt.
- $R_{\rm C}$ und $r_{\rm CE}$ bilden eine Parallelschaltung und sollen zu einem Widerstand $R_{\rm C.ers}$ zusammengefasst werden.
- Die Spannung über $C_{\rm BC}$ ist $\underline{U}_{\rm BC} = \underline{U}_{\rm e} \cdot (1 + \underline{v}_{\rm u})$. $C_{\rm BC}$ lässt sich durch zwei Kapazitäten zu Masse nachbilden, von denen eine mit $C_{\rm BE}$ zusammengefasst werden kann.

Die umgeformte Schaltung ist eine Kette aus zwei RC-Tiefpässen mit Trennverstärker dazwischen.

• Übergangsfrequenzen Eingangs-RC-Tiefpass:

$$f_{0.1} = \frac{1}{2\pi \cdot R_{\rm g.ers} \cdot (C_{\rm BE} + (1 - v_{\rm u}) \cdot C_{\rm BC})}$$

• Übergangsfrequenzen Ausgangs-RC-Tiefpass:

$$f_{0.2} = \frac{1}{2\pi \cdot R_{\rm C.ers} \cdot C_{\rm BC}} \gg f_{0.1}$$

Die Übergangsfrequenz $f_{0.1}$ nimmt überschlagsweise umgekehrt proportional zur Verstärkung ab, weil der kapazitive Umladestrom durch die BC-Kapazität proportional mit der Verstärkung zunimmt. Der Zusammenhang » Verstärkung mal Bandbreite gleich konstant « entsteht durch die BC-Kapazität zwischen Ein- und Ausgang, die sog. Miller-Kapazität.

Basisschaltung

 $C_{\rm BC}$ und $r_{\rm CE}$ tauschen die Positionen.

$$\underbrace{I_{\rm E}}_{R_{\rm g}} \overbrace{\underline{U}_{\rm g}}^{I_{\rm E}} \underbrace{I_{\rm B}}_{r_{\rm BE}} \overbrace{\underline{C}_{\rm BE}}^{r_{\rm CE}} \overbrace{\underline{U}_{\rm g}}^{f {\rm ür} {\rm \ddot{U}} berschläge} a \\
\underbrace{I_{\rm R}}_{R_{\rm C}} \overbrace{\underline{U}_{\rm e}}^{I_{\rm B}} \underbrace{I_{\rm B}}_{r_{\rm BE}} \overbrace{\underline{C}_{\rm BE}}^{r_{\rm CE}} \underbrace{I_{\rm R}}_{v_{\rm u} \cdot \underline{U}_{\rm e}} \overbrace{\underline{U}_{\rm a}}^{I_{\rm C}} \underbrace{I_{\rm B}}_{v_{\rm u} \cdot \underline{U}_{\rm e}} \overbrace{\underline{U}_{\rm a}}^{I_{\rm B}} \underbrace{I_{\rm B}}_{r_{\rm BE}} \underbrace{I_{\rm B}} \underbrace{I_{\rm B}}_{r_{\rm BE}} \underbrace{I_{\rm B}} \underbrace{I_{\rm B}}_{r_{\rm BE}} \underbrace{I_{\rm B}} \underbrace{I_{\rm B}$$

Die Übergangsfrequenz des Eingangs-RC-Glied

$$f_{0.1} \approx \frac{1}{2\pi \cdot (R_{\rm g} \parallel r_{\rm BE}) \cdot C_{\rm BE}}$$

wird durch den Positionstausch von C_{BC} und r_{CE} unabhängig von der Spannungsverstärkung (keine Miller-Kapazität) und die Übergangsfrequenz des Ausgangs-RC-Glieds ist etwa dieselbe wie beim der Emitterschaltung:

$$f_{0.2} \approx \frac{1}{2\pi \cdot R_{\rm C} \cdot C_{\rm BC}}$$

Kollektorschaltung

$$\begin{array}{c}
\underline{U}_{BE} \approx 0 \\
\underline{U}_{B} \xrightarrow{I_{B}} B \\
\underline{U}_{g} \xrightarrow{I_{B}} C \\
\underline{U}_{g} \xrightarrow{I_{B}} C \\
\underline{U}_{e} \xrightarrow{I_{B}} C$$

In der Kollektorschaltung ist die Spannungsverstärkung praktisch eins und die Spannung zwischen Einund Ausgang null. Damit fließt durch $C_{\rm BE}$ und $r_{\rm BE}$ praktisch kein Strom, so dass sie weggelassen werden können. Wenn $r_{\rm CE}$ auch noch gegenüber $R_{\rm g}$ vernachlässigt werden kann, vereinfacht sich die Ersatzschaltung zu einem RC-Tiefpass mit nachgeschaltetem Trennverstärker.

Übergangsfrequenz:

$$f_0 = \frac{1}{2\pi \cdot R_{\rm g} \cdot C_{\rm BC}}$$

Für gleiche Generatorwiderstände ist sie höher als für die Emitter- und Basisschaltung, aber ohne eine erzielbare Spannungsverstärkung.

Zusammenfassung

Eine Emitterschaltung hat eine Strom- und Spannungsverstärkung größer eins. Die Transitfrequenz nimmt etwa proportional mit der Spannungsverstärkung ab. Zur Linearisierung und Stabilisierung gegen Parameterstreuungen, Temperaturschwankungen, ... ist eine Strom- oder Spannungsrückkopplung erforderlich, die die Verstärkung absenkt und die Übergangsfrequenz erhöht.

Die Basisschaltung hat nur eine Spannungsverstärkung, die über die Stromgegenkopplung über den Generatorwiderstand eingestellt wird. Diese Rückkopplung linearisiert die Übertragungsfunktion und mindert den Einfluss von Parametersteuungen. Eine Rückkopplungskapazität zwischen Ein- und Ausgang fehlt, so dass die Übergangsfrequenz nicht mit der Verstärkung abnimmt.

Die Kollektorschaltung hat gleichfalls eine Stromrückkopplung über den Emitterwiderstand, die die Übertragungsfunktion linearisiert und Parametersteuungen kompensiert. Die Spannungsverstärkung ist max. eins und die Übergangsfrequenz größer als die der Basisschaltung und damit größer als die Transitfrequenz der Stromverstärkung des Transistors.

Kaskodenverstärker mit Impedanzwandler

Die nachfolgende Schaltung kombiniert alle drei Grundschaltungen und nutzt deren Vorteile.

- T1 arbeitet in Emitterschaltung. T2 hält das Kollektorpotential konstant, erzwingt Spannungsverstärkung null und verhindert so eine verstärkungsabhängige Abnahme der Übergangsfrequenz.
- T2 arbeitet in Basisschaltung mit dem Kollektorstrom von T1 als Eingabe und erzielt eine Spannungsverstärkung.
- Eine hohe Spannungsverstärkung verlangt ein großen $R_{\rm C}$ (oder eine Stromquelle) und eine Nachfolgeschaltung mit hohem Eingangswiderstand.
- Eine hohe Spannungsverstärkung verlangt ein großen $R_{\rm C}$ (oder eine Stromquelle) und eine Nachfolgeschaltung mit hohem Eingangswiderstand.
- T3 arbeitet deshalb in Kollektorschaltung als Impedanztransformator mit einem Eingangswiderstand von $\approx \beta \cdot R_{\rm E}$.

Die Minderung des Einflusses von Bauteilstreuungen, der Temperatur, … erfordert weitere Schaltungsmaßnahmen, z.B. eine zusätzliche Rückkopplung.

Simulation eines Kaskodenverstärkers

• Bestimmung der Übertragungsfunktion:

Vierpol-Parameter und zeitdiskrete Simulation

```
Transfer_function: -25770.9 transfer
ve#Input_impedance: 11473.1 impedance
output_impedance_at_V(a): 1510.91 impedance
```


Frequenzgang

Rauschen

Den größten Rauschanteil liefert $R_{\rm g}$ und den Rest überwiegend Q1.

2 Thyristor

Aufbau, Ersatzschaltung, Schaltsymbol

Erweiterung eines Bipolartransistors um einen weiteren pn-Übergang. Vierschichtelement, das wie zwei sich gegenseitig haltende Bipolartransistoren wirkt.

- Betriebsarten: Zünden, Löschen.
- Einsatz: Leistungsschalter für hohe Spannungen und Ströme.

Zünden und Selbsthaltung

Bei einer ausreichenden Spannung $U_{\rm AK}$ in Vorwärtsrichtung bewirkt eine Gate-Spannung $U_{\rm GK} > U_{\rm F}$

- eine Diffusion von Elektronen von der Kathode zum Gate-Gebiet,
- die durch den Transistoreffekt weiter in das nächste n-Gebiet diffundieren,
- deren Potential absenken, damit eine Diffusion von Löchern von der Anode in dieses Gebiet ermöglichen,
- die überwiegend in das Gate-Gebiet weiter diffundieren,
- dessen Potential erhöhen und dadurch
- die Diffusion der Elektronen von der Kathode zum Gate auch ohne Gate-Strom aufrecht erhalten.

Zum Ausschalten ist die Diffusion zu stoppen, in der Regel durch Abschalten oder Umpolung der Spannung $U_{\rm AK}$.

Simulation eines Thyristors

Thyristorarten und Eigenschaften

- Netzthyristoren: Freiwerdezeiten >100 µs für 50 Hz-Anwendungen geeignet.
- Frequenzthyristoren für schnellere Schaltzeiten.
- GTO-Thyristoren (Gate Turn Off): Asymmetrisch dotierte Thyristoren, die mit einem negativen Gate-Impulse (typ. 30% des geschalteten Stroms gelöscht werden können.
- Foto-Thyristoren, die mit Licht gezündet werden.
- Vierschichtdioden, d.h. Thyristoren ohne Gate-Anschluss, die bei einer definierten Durchbruchspannung zünden. Überspannungsschutz.
- ...

Es gibt Thyristoren, mit Sperrspannungen bis zu mehreren kV und Schaltströmen bis zu mehreren kA, die praktisch als komplette Waver ausgeführt sind.

3 J- und MesFET

3.1 Aufbau und Funktion

JFET und MesFET

Unipolare Transistoren, bei denen die Leitfähigkeit eines Kanals durch die Breite einer Sperrschicht gesteuert wird:

- JFET: Sperrschichtbreite eines pn-Übergangs.
- MesFET: Sperrschichtbreite eines Schottky-Übergangs.

Steuerung der Kanalleitfähigkeit

Nach Foliensatz F4 nimmt die Breite der Verarmungsschicht sowohl bei einem abrupten pn- als auch bei Schottky-Übergang etwa zu mit:

$$w_{\rm n} \approx \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\rm Diff} - U_{\rm GK})}{N_{\rm D} \cdot q}};$$

 $(\varepsilon - \text{Dielektrizitätskonstante}; q - \text{Elementarladung}; N_{\text{D}} - \text{Donatordichte}; U_{\text{Diff}} - \text{Diffusionsspannung}; U_{\text{GK}} - \text{Gate-Kanal-Sperrspannung})$. Bei einem Kanalstrom $\neq 0$ sind die Gate-Kanal-Spannung und die Kanalbreite ortsabhängig.

- Im ohmschen Bereich reicht der eingeschaltete Kanal bis zum Drain.
- Im Abschnürbereich fließt ein Kanalstrom, aber der eingeschaltete Kanal endet wegen der durch den Spannungsabfall im Kanal abnehmenden Gate-Kanal-Sperrspannung kurz vor dem Drain.
- Im ausgeschalteten Zustand ist der Kanal bereits ab Source ausgeschaltet, so dass kein Strom fließt.
- Der Source ist die Quelle der Ladungsträger, die in den Kanal fließen und der Drain der Abfluss. Zuordnung entsprechend Spannungspolarität.

Schaltsymbole und Strom-Spannungs-Beziehung

- J- und MesFET sind selbstleitend.
- Es gibt sie mit n- und p-Kanal.

3.2 Spice-Modell

Modellgleichung für den Drain-Stroms

(Beta – Steilheit; Vto – Einschaltspannung; Lambda – Kanallängenmodulation; Rs und Rd – Bahnwiderstände). Im Inversbetrieb ($U_{\rm DS} < 0$) vertauschen Source und Drain ihre Funktion.

Spice	Bezeichnung	BF256A	J2n5486
Vto	${ m Einschaltspannung}$	-2,13 V	-3,9 V
Beta	${ m Steilheit}$	$1,96 \frac{\mathrm{mA}}{\mathrm{V}^2}$	$0,79 \ \frac{mA}{V^2}$
Lambda	KanallängenmodParam.	$1,69 \cdot 10^{-2} \mathrm{V}^{-1}$	$10^{-2} \mathrm{V}^{-1}$
Rd	ohmscher Drain-Widerst.	$141\mathrm{m}\Omega$	$3,6~\Omega$
Rs	ohmscher Source-Widerst.	$141\mathrm{m}\Omega$	$3,4\Omega$
Is	${ m pn-S\"attigungsstrom}$	$3,5 \cdot 10^{-16} A$	$1,4.10^{-14}$ A
Cgs	$C_{\rm GS}$ bei $U_{\rm GS}=0$	$2,1\mathrm{pF}$	$0,43\mathrm{pF}$
Cgd	$C_{\rm GD}$ bei $U_{\rm GD}=0$	$2,3\mathrm{pF}$	$0,43\mathrm{pF}$
Pb	$\operatorname{Diffusions spannung}$	$0,774\mathrm{V}$	$1,16~\mathrm{V}$
Kf	Funkelrauschkoeff.	-	6E-18
Af	Funkelrauschexp.	-	1

 $(BF256A-f"ur \ Hochfrequenzanwendungen; \ J2n5486-Modell\ mit\ Parametern\ f"ur \ das\ 1/f-Rauschen). \ Weitere Parameter\ siehe\ [scad3.pdf].$

Kapazitäten

Die Sperrschichtkapazität zwischen Gate und Kanal wird auf eine Kapazität zwischen Gate und Source und Gate und Drain aufgeteilt. Für $U_{\rm GS} \leq Fc \cdot PB$ (unterhalb etwa der halben Diffusionsspannung) nimmt sie wie folgt mit der Gate-Source-Spannung ab:

$$C_{\mathrm{GS}} = \mathbb{Cgs} \cdot \frac{1}{\left(1 + rac{U_{\mathrm{GS}}}{\mathbb{PB}}\right)^{\mathrm{B}}}$$

 $(PB - Diffusionsspannung des pn-Übergangs; B - vom Dotierprofil abhängiger Parameter; Cgs, Cgd - Kapazitäten für Sperrspannung null. Für Überschläge werden die Kapazitäten im Weiteren durch ihre Werte für Sperrspannung null angenähert. Der Gate-Strom <math>I_{GS}$, modelliert durch die Parameter Is (Sättigungsstrom) und N (Emmisionskoeffizient) wird vernachlässigt.

3.3 Kleinsignalmodell

Statisches Kleinsignalmodell

In Verstärkern arbeiten JFETs im Abschnürbereich:

$$I_{\rm D} = {\sf Beta} \cdot \left(1 + {\sf Lambda} \cdot U_{
m DS}\right) \cdot \left(U_{
m GS} - {\sf Vto}\right)^2$$

- Eingangswiderstand: sehr groß $(r_{\rm GS} \to \infty)$
- Steilheit: $S = \left. \frac{\partial I_{\rm D}}{\partial U_{\rm GS}} \right|_{\rm A} \approx \sqrt{2 \cdot \text{Beta} \cdot I_{\rm D.A}}$
- Ausgangswiderstand: $r_{\rm DS} = \left. \frac{\partial U_{\rm DS}}{\partial I_{\rm D}} \right|_{\rm A} \approx \frac{1}{\text{Lambda} \cdot I_{\rm D.A}}$

Ergänzung der Kapazitäten

Für Überschläge:

- Steilheit: $S \approx \sqrt{2 \cdot \text{Beta} \cdot I_{\text{D.A}}}$
- Ausgangswiderstand: $r_{\rm DS} \approx \frac{1}{L_{\rm ambda} \cdot I_{\rm D,A}}$
- Gate-Source-Kapazität: $C_{\rm GS} \approx C_{\rm gs}$
- Gate-Drain-Kapazität: $C_{\rm GD} \approx C_{\rm gd}$

Spice	$\operatorname{Bezeichnung}$	${ m BF256A}$	J2n5486
Beta	Steilheit	$1,96 \frac{\mathrm{mA}}{\mathrm{V}^2}$	$0,79 \ \frac{\mathrm{mA}}{\mathrm{V}^2}$
Lambda	Kanallängenparameter.	$1,69 \cdot 10^{-2} \mathrm{V}^{-1}$	$10^{-2} \mathrm{V}^{-1}$
Cgs	$C_{ m GS}$ bei $U_{ m GS}=0$	$2,1~\mathrm{pF}$	$0,43\mathrm{pF}$
Cgd	$C_{\rm GD}$ bei $U_{\rm GD}=0$	$2,3~\mathrm{pF}$	$0,43\mathrm{pF}$

3.4 Grundschaltungen

Grundschaltungen

Die Grundschaltungen verhalten sich ähnlich wie bei Bipolartransistoren:

- Source-Schaltung: Spannungsverstärkung $\gg 1$.
- Drain-Schaltung: Spannungsverstärkung $\approx 1.$ Trennverstärker.
- Gate-Schaltung: Spannungsverstärkung $\gg 1.$ Stromverstärkung $\approx 1.$ Große Bandbreite.

Source-Schaltung

Verstärkung im Arbeitspunkt $U_{e,A} = -3,6 V$ (mit ».tr V(a) Ve«):

$R_{\rm D}$	10 k	$20\mathrm{k}$	$30\mathrm{k}$	40 k	$50\mathrm{k}$
v _u	-5,1	-10	-14,8	-19.4	-23,9

Kleinsignalersatzschaltung und Frequenzgang

Mit Cgs \approx Cgd \approx 0,4 pF so wie $v_{\rm u}$ und $r_{\rm a}$ aus der ».tf«-Simulation:

RD	10 k	20 k	30 k	40 k	$50 \mathrm{k}$
$v_{\rm u}$	-5,1	-10	-14,8	-19.4	-23,9
$r_{\rm a}$	$9,92~{ m k}$	$19,7~{ m k}$	$29,4\mathrm{k}$	$38,8~{ m k}$	$48,1 \mathrm{k}$
$f_{01} = \frac{1}{2\pi \cdot \operatorname{Cgs} + (1 - v_{u}) \cdot \operatorname{Cgd}}$	$5,6~\mathrm{MHz}$	$_{3,3\mathrm{MHz}}$	$_{2,4\mathrm{MHz}}$	$1,9~\mathrm{MHz}$	$1,5\mathrm{MHz}$
$f_{02} = rac{1}{2\pi \cdot r_{\mathrm{a}} \cdot \mathrm{Cgd}}$	40 MHz	$20\mathrm{MHz}$	$_{13,5~\mathrm{MHz}}$	$10,3\mathrm{MHz}$	$8,3\mathrm{MHz}$

Grenzfrequenz des Verstärkers

Ergebnisdiskussion

R_1	10 k	20 k	30 k	40 k	$50 \mathrm{k}$
f_{01} (gerechnet)	$5,6\mathrm{MHz}$	$3,3\mathrm{MHz}$	$2,4\mathrm{MHz}$	$1,9\mathrm{MHz}$	$1,5\mathrm{MHz}$
f_0 (Verstärker)	$12,4\mathrm{MHz}$	$6,8\mathrm{MHz}$	$4,7\mathrm{MHz}$	$3,5\mathrm{MHz}$	$2,7\mathrm{MHz}$

Die Simulation ergibt etwa die doppelten Grenzfrequenzen wie der Überschlag. Das ist plausibel:

- Gerechnet wurde mit den Sperrschichtkapazitäten für $U_{\rm GS} = 0$.
- Tatsächlich ist $U_{\rm GS} = -3.6$ V, d.h. betragsmäßig die 3 bis 4-fache Diffusionsspannung. Die Wurzel aus 3+1 ist 2.
- Etwa halbe Kapazitäten bedeuten doppelte Grenzfrequenzen.

Gate-Schaltung

Bei der Gate-Schaltung liegt das Gate wechselstrommäßig auf Masse. Keine Rückkopplungskapazität. $R_{\rm g}$ wirkt ähnlich wie eine Stromgegenkopplung, die die Verstärkung mindert und die Kennlinie linearisiert. Abschnürbereich $3 V \leq U_{\rm e} \leq 3.8 V$.

Für $U_{\rm GS} > -3$ V ist der Transistor soweit eingeschaltet, dass kaum Spannung zwischen Source und Drain abfällt.

Simulations ergebnis mit ». Tr« im Arbeitspunkt $U_{\rm e}=3,3\,{\rm V}:$

Kleinsignalersatzschaltung mit Kapazitäten:

In der Basisschaltung tauschen praktisch C_{GD} und r_{DS} ihren Platz. Das verringert Eingangswiderstand und Eingangskapazität und vervielfacht die Übergangsfrequenz des ersten RC-Tiefpasses. Allerdings hat der Ausgangstiefpass bei etwa gleicher Kapazität den höheren Widerstand, die geringere Grenzfrequenz und bestimmt damit die Grenzfrequenz des Verstärkers.

Für die anderen Grundschaltungen lassen sich ähnliche Untersuchungen durchführen.

3.5 Rauschen

Rauschen

JFETs werden in rauscharmen Vorverstärkern für hochohmige Quellen eingesetzt. Für den Beispiel-JFET sind auch die Parameter Kf und Af zur Beschreibung des 1/f-Rauschens mit angegeben. Simulation mit ».noise«:

- Kontrolle mit ».op«: $U_{\rm a.A} \approx 2.6 \, {\rm V}$
- Kontrolle mit ».tf«: $v_{\rm u} = -14.8, \dots$

Spektralen Rauschdichten am Ausgang insgesamt und aufgeteilt nach Rauschquellen:

Rauschspannung im Frequenzbereich von 10 Hz bis 100 kHz:

noise_e: INTEG(v(onoise))=0.000190847 FROM 10 TO 100000
noise_rg: INTEG(v(rg))=0.000189467 FROM 10 TO 100000
noise_fid: INTEG(v(j1.fid))=1.92978e-006 FROM 10 TO 100000
noise_sid: INTEG(v(j1.sid))=2.17493e-005 FROM 10 TO 100000

- Gesamte Rauschspannung am Ausgang: $U_{\text{Reff.a}} = 191 \, \mu \text{V}$
- Rauschen am Ausgang durch R_{g} : $U_{\text{Reff.a}}(R_{g}) = 189 \,\mu\text{V}$

Rauschzahl:

$$F = \frac{U_{\text{Reff.a}}^2}{U_{\text{Reff.a}} (R_{\text{g}})^2} = \left(\frac{191\,\mu\text{V}}{189\,\mu\text{V}}\right)^2 = 1.02$$

Rauschanteile des JFET's:

- Stromrauschen des JFET's: $U_{\text{Reff.a}}$ (j1.sid) = 22 μ V
- 1/f-Rauschen des JFETs: $U_{\text{Reff.a}}$ (j1.fid) = 1,9 μ V
- Für hochohmige Signalquellen hat ein JFET-Verstärker eine sehr geringe Rauschzahl.
- Für niederohmische Quellen sind Bipolartransistoren besser geeignet.
- Das 1/f-Rauschen interessiert nur bei niedriger unterer Grenzfrequenz.

4 MOSFET

4.1 Aufbau und Funktion

Feldeffekt (NMOS-Transistor)

- Gate-Isolator-Halbleiter \Rightarrow Plattenkondensator.
- Negative Gateladung führt zu einer Ansammlung positiver beweglicher Ladung unter dem Gate.
- Source-Kanal- und Drain-Kanal-Übergang gesperrt.

Positive Gatespannung größer der Einschaltspannung $U_{\rm th}$:

- Absenkung des chemischen Potentials im p-Gebiet unter dem Gate so weit, dass bewegliche Elektronen vom Source in den Kanal diffundieren können.
- Bewegliche Ladung im Kanal

$$Q_{l}(x) = C_{l} \cdot \left(U_{\text{GK}}(x) - U_{\text{th}} \right)$$

 $(x - \text{Weg vom Source zum Drain}; Q_1(x) - \text{beweglichen Ladung für Wegstück } dx; C_1 - \text{Gate-Kanal-Kapazität für Wegstück } dx).$

Strongleichung – aktiver Bereich

- Bei einem Stromfluss durch den Kanal nimmt der Spannungsabfall über dem Kanal U(x) mit dem Weg x zu.
- Die Menge der beweglichen Ladung im Kanal nimmt mit x ab:

$$Q_{\rm l}(x) = C_{\rm l} \cdot (U_{\rm GK}(x) - U_{\rm th}) = C_{\rm l} \cdot (U_{\rm GS} - U_{\rm th} - U(x))$$

• Der Drainstrom ist ein Driftstrom:

$$I_{\rm D} = Q_{\rm l}\left(x\right) \cdot \mu \cdot E_{\rm x}$$

 $(\mu - \text{Beweglichkeit}; E_x - \text{Feldstärke in Kanalrichtung}; \mu \cdot E_x - \text{Geschwindigkeit der Ladungsträger}).$

• Die Feldstärke in Stromflussrichtung ist gleich der Spannungsänderung entlang des Kanals:

$$E_{\mathbf{x}} = \frac{d \, U\left(x\right)}{d \, x}$$

• Alle Gleichungen zusammen ergeben die Diffentialgleichung

$$I_{\rm D} = C_{\rm l} \cdot \mu \cdot \left(U_{\rm GS} - U_{\rm th} - U(x) \right) \cdot \frac{dU(x)}{dx}$$

die durch Integration über den Weg durch den Kanal gelöst wird:

$$I_{\rm D} \cdot \int_0^l dx = C_1 \cdot \mu \cdot \int_0^l \left(U_{\rm GS} - U_{\rm th} - U(x) \right) \cdot \frac{dU(x)}{dx} \cdot dx$$

Lösung der DGL

(L - Kanallänge) mit dem relativem Steilheitskoeffizient:

$$K = \frac{C_{\rm l} \cdot \mu}{L}$$

Abschnürbereich

- Das Kanalende ist ausgeschaltet.
- Die restliche Spannung $U_{\rm DS} U_{\rm GS} + U_{\rm th}$ fällt über dem eingeschnürten Kanalstück ab.

- Die Länge des Abschnürbereichs regelt sich so ein, dass die ankommenden Ladungsträger zum Drain abfließen können.
- Der ankommende Strom $I_{\rm D}$ hängt nicht von der Spannung über dem Abschnürpunkt ab.
- Der Drainstrom für den Übergang in den Abschnürbereich $U_{\rm DS} = U_{\rm GS} U_{\rm th}$:

$$I_{\rm D} = K \cdot \left((U_{\rm GS} - U_{\rm th}) \cdot U_{\rm GS} - U_{\rm th} - \frac{(U_{\rm GS} - U_{\rm th})^2}{2} \right)$$
$$= \frac{K}{2} \cdot (U_{\rm GS} - U_{\rm th})^2$$

nimmt mit steigendem $U_{\rm DS}$ nicht weiter zu:

$$I_{\rm D} = \begin{cases} 0 & U_{\rm GS} \leq U_{\rm th}^{*\rm S} \\ K \cdot \left((U_{\rm GS} - U_{\rm th}) \cdot U_{\rm DS} - \frac{U_{\rm DS}^2}{2} \right) & \text{sonst } U_{\rm DS} \leq U_{\rm GS} - U_{\rm th}^{*\rm A} \\ \frac{K}{2} \cdot (U_{\rm GS} - U_{\rm th})^2 & \text{sonst}^{*\rm E} \end{cases}$$

(*^S – Sperrbereich; *^A – aktiver Bereich; *^E – Abschnürbereich).

4.2 Spice-Modell

Spice-Modell

- Steilheit: $K \to Kp$
- Einschaltspannung: erweitertes Modell

$$U_{\mathrm{th}} = \mathrm{Vto} + \mathrm{Gamma} \cdot \left(\sqrt{\mathrm{Phi} - U_{\mathrm{BS}}} - \sqrt{\mathrm{Phi}} \right)$$

 $(U_{\rm BS} - {\rm Bulk-Source-Spannung}).$

• Kanallängenmodulation (Early-Effekt): Kanalverkürzung durch Ausdehnung des Abschnürpunkts. Beobachtbares Verhalten:

$$\begin{split} I_{\rm D} &= & \mathrm{Kp} \cdot \left(1 + \mathrm{Lambda} \cdot U_{\rm DS}\right) \cdot \\ & \cdot \begin{cases} 0 & \mathrm{Sperrbereich} \\ (U_{\rm GS} - U_{\rm th}) \cdot U_{\rm DS} - \frac{U_{\rm DS}^2}{2} & \mathrm{aktiver Bereich} \\ \frac{(U_{\rm GS} - U_{\rm th})^2}{2} & \mathrm{Abschnürbereich} \end{cases} \end{split}$$

mit $U_{\rm th} = V to + \operatorname{Gamma} \cdot \left(\sqrt{\operatorname{Phi} - U_{\rm BS}} - \sqrt{\operatorname{Phi}} \right).$

Parameter für für einen CMOS-Beispielprozess:

	Param.	Bezeichnung	n-Kanal	p-Kanal
	Vto	Null-Schwellspannung	$0,73\mathrm{V}$	$-0,75 \mathrm{~V}$
	Gamma	${ m Substartsteuerfaktor}$	$0,73\sqrt{ m V}$	$0,56\sqrt{ m V}$
	Phi	Inversionsspannung	$0,76~{ m V}$	$0,73~{ m V}$
ſ	Кр	relativer Steilheitskoeffizient	$\frac{W}{L}$ · 69 μ A/V ²	$rac{W}{L}$ ·23,6 $\mu\mathrm{A}/\mathrm{V}^2$
	Lambda	Kanallängen-Modulationsparameter	$0,033{ m V}^{-1}$	$0,055~{ m V}^{-1}$

Bei Einzeltransistoren sind Bulk und Source verbunden $(U_{\rm BS} = 0)$:

$$U_{\rm th} = V to$$

Param.	Bezeichnung	n-Kanal	p-Kanal	
Param.	$\operatorname{Bezeichnung}$	BSD215	IRF140	
Vto	${\it Null-Schwellspannung}$	$0,93~{ m V}$	$3,2~{ m V}$	
Кр	relative Steil- heitskoeffizient	$\frac{W}{L}$ ·20,8 $\mu A/V^2$	$rac{W}{L}$ \cdot 20,6 $\mu\mathrm{A}/\mathrm{V}^2$	
W	$\operatorname{Kanalweite}$	$540\mathrm{\mu m}$	$0,97\mathrm{m}$	
L	Kanallänge	2 μm	2 μm	

BSD215 – n-Kanal Kleinsignal-MOSFET; IRF140 – n-Kanal-Leistungs-MOSFET.

Bahnwiderstände

Param.	Bezeichnung	BC547B	BUV47
Rg	Gate-Bahnwiderstand	-	$5,6~\Omega$
Rs	Source-Bahnwiderstand	$0,02~\Omega$	$0,022~\Omega$
Rd	${ m Drain-Bahnwiderstand}^*$	$25 \ \Omega$	$0,022~\Omega$
Rb	${\bf Bulk}\text{-}{\bf Bahnwiderstand}^*$	370Ω	-

(* von LT-Spice nicht genutzt)

Sperrströme der Bulkdioden

• Parameter für die Sperrströme der Bulk-Dioden:

Param.	Bezeichnung	BSD215	IRF140
Is	Sättigungssperrstrom Bulk-Dioden	$125\mathrm{pA}$	1,3 pA
N	Emmisionskoeffizient der Bulk-Dioden	1	1

Kapazitäten

Modellierung der Gate-Kapazität. Simulator teilt die Gate-Kapazitäten hälftig in eine zum Source und zum Drain auf:

$$C_{\rm GS} = C_{\rm GD} = \varepsilon_{\rm Si} \cdot \frac{W \cdot L}{2 \cdot t_{\rm OX}}$$

 $\begin{array}{c} (\texttt{L}-\texttt{Kanallänge; } \mathbb{W}-\texttt{Kanalbreite; tox}-\texttt{Oxiddicke}). \end{array} \\ \overset{\texttt{L} \cdot \texttt{tox}}{\texttt{Beispiel Kanalfläche 1} \times 1 \mu \texttt{m}, } \texttt{Oxiddicke 25} \texttt{nm}, \\ \varepsilon_{\texttt{SiO}_2} \approx 33, 6 \, \frac{\texttt{pF}}{\texttt{m}}: \end{array}$

$$C_{\rm GS} = C_{\rm GD} = 33.6 \, \frac{\rm pF}{m} \cdot \frac{1\,\mu{\rm m} \cdot 1\,\mu{\rm m}}{2 \cdot 25\,{\rm nm}} = 0.67\,{\rm fF}$$

Kapazität zwischen Source/Drain und Substrat:

 $C_{SB} = Cjsw \cdot Ps + Cj \cdot As$ $C_{DB} = Cjsw \cdot Pd + Cj \cdot Ad$

 $\begin{array}{l} (\texttt{Cjsw} - \texttt{umfangbezogenen Kapazität; Ps} - \texttt{Umfang des Source-Gebiets; Cj} - \texttt{flächenbezogene Kapazität; Ps} - \texttt{Fläche des Source-Gebiets; Pd} - \texttt{Umfang des Drain-Gebiets; Pd} - \texttt{Fläche des Drain-Gebiets)}. Beispiel: Source-Umfang 4 \ \texttt{\mu}m; Source-Fläche 1 \ \texttt{\mu}m^2, \ \texttt{Cj} = 360 \ \frac{\mu\texttt{F}}{\texttt{m}} \ \texttt{, Cjsw} = 250 \ \frac{\texttt{pF}}{\texttt{m}^2}: \end{array}$

$$C_{\rm SB} = C_{\rm J} = 250 \, \frac{{\rm pF}}{{\rm m}} \cdot 4 \, \mu {\rm m} + {\rm Ps} + 360 \, \frac{\mu {\rm F}}{{\rm m}} \cdot 1 \, \mu {\rm m}^2 = 1,36 \, {\rm fF}$$

4.3 Digitale Grundschaltungen

CMOS-Inverter

- Pull-down mit NMOS- und Pull-up mit PMOS-Transistor.
- Strom fließt nur während der Schaltvorgänge.

Zur Modellierung des Schaltverhalten Kapazitätsparameter ergänzen. $C_1 = 10 \,\text{fF}$ entspricht $\approx 10 \,\text{Nach-folgegattern}$.

NAND-Gatter

- Schätzen Sie die Ein- und Ausschaltverzögerung.
- Wie ließe sich die Ein- und Ausschaltverzögerung zu halbieren?

4.4 Latch-Up

Parasitärer Thyristor und Latch-up

- Die Schichtfolge npnp bildet eine Thyristor, bestehend aus zwei Bipolartransistoren.
- Wenn einer der parasitären Bipolartransistoren einen kurzen Basisstrom bekommt, liefert er dem anderen Basisstrom, der einschaltet und dem ersten Basisstrom liefert.
- Wirkt wie ein Kurzschluss zwischen Versorgungsspannung und Masse. Thermische Zerstörung des Bauteils.
- Potentielle Quellen für Zündströme: Eingangs- und Ausgangspotentiale < 0 oder $> U_V$ über Eingangsschutzdioden oder die Bulkdioden am Ausgang.
- Bei Gefahr von unzulässigen Eingangsspannungen Reihenwiderstand $\approx 100 \,\Omega$ zur Begrenzung des Stroms durch die Schutzdioden.

4.5 Leistungs-MOSFETs

MOSFETs für hohe Spannungen

- Hohe Steilheit verlangt kurze Kanale. \Rightarrow Geringe $|U_{\text{DS.max}}|$.
- Kurzer Kanal und hohes $|U_{DS,max}|$: Zusätzlichens niedrig dotiertes Driftgebiet zwischen Kanal und Drain, über dem ein Großteil der Drain-Source-Spannung abfällt.
- Im aktiven Bereich wirkt die Driftstrecke als selbstleitender FET.
- Spannungsfestigkeit Größenordnung 100 V. Einschaltwiderstand und zulässiger Strom abhängig von der Gate-Breite.

Flächensparende 3D-Anordnung

- Kanal unterm Gate, sehr kurz.
- Source- und Bulk-Anschlüsse nach oben herausgeführt.
- Niedrig dotierte Driftstrecke nach unten.
- Hochdotierter Drainanschluss auf der Wafer-Unterseite.
- Einschaltwiderstände im m Ω -Bereich verlangen Kanalbreiten im Meterbereich. Wabenförmige Anordnung der Gate-Hügel.

5 IGBT

Von Leitungs-MOSFET zum IGBT⁵

⁵Isulated Gate Bipolar Transistor.

gesteuerter Kanal

- Hohe Spannungsfestigkeit \Rightarrow lange, niedrig dotierte Driftzohne.
- Mit der Länge und Dotierdichte nimmt die Leitfähigkeit ab.
- Idee zur Verbesserung der Leitfähigkeit: Ersatz des n^+ -Drain-Gebiets durch einen p^+ -Gebiet. Bewirkt im eingeschalteten Zustand eine Diffusion von Löchern in das Driftgebiet. Höhere Ladungsdichte bessere Leitfähigkeit.
- Für die in die Driftzohne diffundierenden Löcher ist das p-Bulk-Gebiet ein Kollektor⁶.

Ersatzschaltung und Schaltsymbol

- Außer dem gewollten Bipolartransistor zur Injektion von Löchern in das Driftgebiet, gibt es einen weiteren Bipolartransistor, der mit dem ersten einen Thyristor bildet.
- Bei einem zu hohen Spannungsabfall über R_2 zündet der IGBT als Thyrister und ist dann nicht mehr über das Gate ausschaltbar.
- Flussspannung im eingeschalteten Zustand typ. 2,3 V. (Für niedrige Betriebsspannungen sind Bipolartransistoren und Leistungs-MOSFET günstiger).

IGBT-Modul für 3,3 kV und 1,2 kA:

Vorteil von IGBTs gegenüber Leistungs-MOSFETS:

- Spannungsfestigkeit bis in den kV-Bereich (Halbleiterschalter für Hochspannungen).
- Gut leitende Triftzohne.

Nachteile:

- Die Flussspannung zwischen Driftgebiet und Kollektor erhöht den Spannungsabfall im eingeschalteten Zustand.
- Erhöhte Ausschaltverzögerung durch den erforderlichen Abbau der Diffusionsladung in der Driftzohne (Ausschaltstromschleife wie bei pn-Diode).

⁶Der Anschluss mit Kollektor-Funktion ist der IGBT-Emitter.