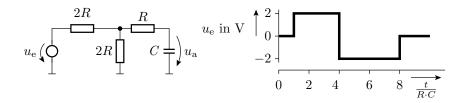
Technische Universität 27. Mai 2022

Clausthal Institut für Informatik Prof. G. Kemnitz


Elektronik 2: Aufgabenblatt 5 (Zeitdiskrete Simulation)

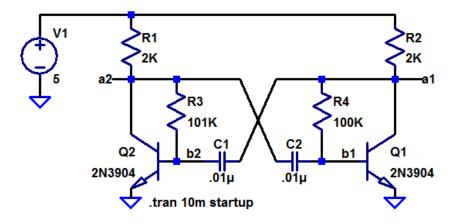
Hinweise: Schreiben Sie die Lösungen, so weit es möglich ist, auf die Aufgabenblätter. Tragen Sie Namen, Matrikelnummer und Studiengang in die nachfolgende Tabelle ein. Nennen Sie die an die Abgabe-EMail angehängten pdf-Datei(en):

(<name> – ihr Name, <matr> – ihre Matrikel-Nummer, <opt> – optinales Kürzel bei mehreren Dateien). Hängen Sie bei Lösung mit dem Simulator an die Abgabe-EMail auch alle relevanten Bildschirmfotos und Simulationsdateien an, die helfen können, um bei von den Musterlösungen abweichenden Ergebnissen nachvollziehen zu können, wie weit die abgegebene Lösung dennoch richtig ist.

Name	Matrikelnummer	Studiengang	Punkte von 14

Aufgabe 5.1: Gegeben sind die nachfolgende Schaltung und der Signalverlauf der Eingangsspannung.

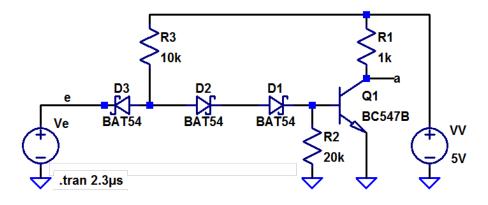
a) Transformieren Sie die Schaltung in ein funktionsgleiches geschaltetes RC-Glied. Bestimmen Sie aus der Ersatzschaltung die Zeitkonstante τ und den Signalverlauf des stationären Wertes, gegen den die Spannung $u_{\rm a}$ strebt.


Zeitkonstante $ au$	
$U_{\rm a}^{(+)}$ für $R \cdot C < t < 4 \cdot R \cdot C$	
$U_{\rm a}^{(+)}$ für $4 \cdot R \cdot C < t < 8 \cdot R \cdot C$	
$U_{\rm a}^{(+)}$ für $t > 8 \cdot R \cdot C$	

- b) Schätzen Sie mit Hilfe von au-Elementen den Signalverlauf der Ausgangsspannung $u_{\rm a}$. 2P
- c) Überprüfen Sie das Ergebnis aus Aufgabenteil b per Simulation mit $R=1\,\mathrm{k}\Omega$ und $C=10\,\mathrm{n}$ F. Die Anstiegs- und Abfallzeiten des PWL¹-Eingabesignals sei 100 ns. Tragen Sie hierzu die Programmieranweisung für die Quelle und die Ausgangsspannungen für die vorgegebenen Zeitpunkte in die nachfolgende Tabelle ein.

¹ piecewise linear

Progr. Quelle					
Zeit	20 μs	$30\mathrm{\mu s}$	$50\mathrm{\mu s}$	70 μs	100 μs
Wert von $u_{\rm a}$					


Aufgabe 5.2: Ausgangspunkt sei der in der Vorlesung behandelte RC-Oszillator:

Ändern Sie die Kapazitäten C_1 und C_2 so ab, dass am Ausgang a_1 ein periodisches Signal mit einer Periodendauer von 1 s und einer Pulsbreite (Dauer der Ausgabe von 5 V) von 0,2 s ausgegeben wird.

C_1	
C_2	

Aufgabe 5.3: Gegeben ist die nachfolgende Schaltung eines Dioden-Transistor-Inverters:

a) Programmieren Sie die Eingabequelle mit der Funktion »PULSE« so, dass nach einer Startverzögerung von 50 ns zwei Pulse mit einer Amplitude 5 V, einer Anstiegs- und Abfallzeit von 50 ns, einer Einschaltzeit von 300 ns und einer Periode von 1 µs erzeugt werden. Während der Startverzögerung und in den Pulslücken soll die Eingangsspannung 0 V betragen. 1P

Programmieranweisung Quelle Ve	

b) Bestimmen Sie die Verzögerung $t_{\rm d1}$ von der steigenden Eingabe- zur fallenden Ausgabeflanke (Einschalten von Q1) und die Verzögerung $t_{\rm d2}$ von fallenden Eingabe- zur steigenden

Ausgabeflanke (Ausschalten von Q1) für $R_2 = 5 \,\mathrm{k}$, 10 k und 20 k. Die Messzeit soll immer beginnen, wenn sich u_e um 20% geändert hat, und enden, wenn sich u_a um 80% geändert hat 2 .

	$R_2 = 5 \mathrm{k}$	$R_2 = 10 \mathrm{k}$	$R_2 = 20 \mathrm{k}$
$t_{ m d1}$			
$t_{ m d2}$			

c) Suchen Sie eine Erklärung für den in Aufgabenteil b beobachteten Einfluss von R_2 auf die Gatterverzögerung.

 $[\]overline{^2}$, d.h. bei fallender Flanke von $u_{
m e}$ bei $u_{
m e}=u_{
m a}=5\,{
m V}$ und bei steigender Flanke von $u_{
m e}$ bei $u_{
m e}=u_{
m a}=1\,{
m V}$