

Elektronik II Foliensatz 4: Halbleiter, Dioden

G. Kemnitz

Institut für Informatik, TU Clausthal (E2-F4) 6. Juni 2023

Inhalt F4: Halbleiter, Dioden

Halbleiter

- 1.1 Stromfluss in Halbleitern
- 1.2 Undotiert (intrinsisch)
- 1.3 Dotiert (extrinsisch)
- 1.4 Stromloser pn-Übergang
- 1.5 pn-Übergang, Sperrbereich
- 1.6 pn-Übergang Durchlassbereich

Dioden

2.1 Spice-Modell

- 2.2 Durchlassbereich
- 2.3 Sperr- und Durchbruchbereich
- 2.4 Sperrschicht- und Diffusionskapazität
- 2.5 Kleinsignalmodell Spezielle Dioden
- Schottky-Diode
- 3.2 Z-Dioden
- 3.3 PIN-Diode
- 3.4 Kapazitätsdiode

Halbleiter

Stromfluss in Halbleitern

1. Halbleiter

Lernziel

Entwicklung eines quantitativen Verständnisses für

- die Leitungsvorgänge in undotierten und dotierten Halbleitern und
- die Strom-Spannungs-Beziehung an pn-Übergängen.

Die Leitungsvorgänge in Halbleitern und an pn-Übergängen bilden die Grundlage für das Verständnis der Verhaltens- und Simulationsmodelle für

- Dioden
- Bipolartransistoren,
- MOS-Transistoren und
- weitere Halbleiterbauteile.

1. Halbleiter

Die betrachteten physikalischen Größen

	Symbol	Maßeinheit
Energie ⁽¹⁾ , Fermienergie ⁽²⁾ ,	W, W_{F}, ζ	J (Joule)
chemisches Potential		$eV=1,6 \cdot 10^{-19}J$
mittlere thermische Energie	$k_{\mathrm{B}} \cdot T$	(eV – Elektronenvolt)
Temperatur	T	K (Kelvin)
Boltzmannkonstante	k_{B}	$1.38 \cdot 10^{-23} \frac{\text{J}}{\text{K}} =$
		$8,62 \cdot 10^{-5} \frac{\text{eV}}{\text{K}}$
Potential ⁽³⁾ , Spannung ⁽⁴⁾	$\varphi = \frac{W}{q}, U$	V (Volt)
Elementarladung	\overline{q}	$1.6 \cdot 10^{-19}C$
Temperaturspannung	$U_{\rm T} = \frac{k_{\rm B} \cdot T}{q}$	bei 300 K $\approx 26\mathrm{mV}$

⁽¹⁾ Energiedifferenz der Ladungsträger zu einem Bezugspotential; (2) Energie, bis zu der die Elektronenzustände bei T=0 besetzt sind; ⁽³⁾Energie der Ladungsträger pro Ladung; (4) Potentialdifferenz.

Halbleiter 1. Stromfluss in Halbleitern

Dichte der beweglichen	p (der Löcher ⁽¹⁾), n (der	m^{-3}
Ladungsträger	bew. Elektr. (2)	
Driftgeschwindigkeit	$v_{\rm p/n.drift} = (-)\mu_{\rm p/n} \cdot E$	$\frac{m}{s}$
Beweglichkeit	$\mu_{ m n},\mu_{ m p}$	$\frac{s}{\frac{\text{m}^2}{\text{Vs}}}$
Diffusionsgeschwindigkeit	$v_{\text{p.diff}} = D_{\text{p}} \cdot \frac{\partial p}{p \cdot \partial x},$	$\frac{m}{s}$
	$v_{\text{n.diff}} = D_{\text{n}} \cdot \frac{\partial n}{n \cdot \partial x}$	
Diffusionskoeffizient ⁽³⁾	$D_{\rm p/n} = U_{\rm T} \cdot \mu_{\rm p/n}$	$\frac{m^2}{s}$
Strom ⁽⁴⁾	$I = \frac{dQ}{dt} = \frac{dQ}{dl} \cdot v$	Α
Leitungsquerschnitt	A	m²
Stromdichte	$J = \frac{I}{A} =$	A/m^2
	$q \cdot (p \cdot v_{\rm p} - n \cdot v_{\rm n})$	
Raumladungsdichte	$\rho, \ \left(\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}\right)^{(5)}$	$\frac{\frac{As}{m^3}}{\frac{F}{m}}$
Dielektrizitätskonstante (Si)	ε , $\varepsilon_{\rm Si} \approx 100 \frac{\rm pF}{m}$	$\frac{\dot{F}}{m}$

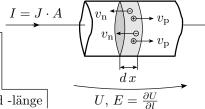
⁽¹⁾ freie Zustände im Valenzband; (2) besetzte Zustände im Leitungsband;

⁽³⁾ Einsteingleichung; (4) bewegte Ladung pro Zeit, bewegte Ladungsdichte mal Fläche mal Geschwindigkeit. (5) Poissongleichung

Ströme in Halbleitern $I = J \cdot A$

- ⊖ bewegliche Elektronen
- bewegliche Löcher
- I, J Strom, Stromdichte
- U, E Spannung, Feldstärke

A, x Leitungsquerschnitt und -länge



$$J = \frac{I}{A} = q \cdot p \cdot v_{\rm p} - q \cdot n \cdot v_{\rm n}$$

Die Stromdichte ist das Produkt aus der Elementarladung, den Dichten der beweglichen Ladungsträger n und p sowie deren Geschwindigkeiten. Die Geschwindigkeiten setzen sich zusammen aus den Driftgeschwindigkeiten

$$v_{\text{p.drift}} = \mu_{\text{p}} \cdot E, \quad v_{\text{n.drift}} = \mu_{\text{n}} \cdot E$$

und den Diffusionsgeschwindigkeiten:

$$v_{\text{p.diff}} = D_{\text{n}} \cdot \frac{\partial p}{p \cdot \partial x}, \quad v_{\text{n.diff}} = D_{\text{n}} \cdot \frac{\partial n}{n \cdot \partial x}$$

Die Diffussionskoeffizienten $D_{\rm p/n}$ sind nach Einsteingleichung das Produkt aus Temperaturspannung $U_{\rm T}$ und Beweglichkeit $\mu_{\rm p/n}$:

$$v_{\text{p.diff}} = U_{\text{T}} \cdot \mu_{\text{p}} \cdot \frac{\partial p}{p \cdot \partial x}, \quad v_{\text{n.diff}} = U_{\text{T}} \cdot \mu_{\text{n}} \cdot \frac{\partial n}{n \cdot \partial x}$$

Eingesetzt in die Gleichung der Stromdichte:

$$J = q \cdot \left(\mu_{\rm p} \cdot \left(p \cdot E + U_{\rm T} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\rm n} \cdot \left(n \cdot E + U_{\rm T} \cdot \frac{\partial n}{\partial x} \right) \right) \tag{1}$$

Die Feldstärkeänderung in Stromflussrichtung ist nach der Poissongleichung proportional zur Raumladungsdichte aus beweglichen und ortsfesten Ladungen:

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon} \tag{2}$$

 $(\rho - \text{Raumladung}; \varepsilon - \text{Dielektrizitätskonstante}).$

Zusammenfassung

Die Stromdichte in einem Halbleiter

$$J = q \cdot \left(\mu_{\rm p} \cdot \left(p \cdot E + U_{\rm T} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\rm n} \cdot \left(n \cdot E + U_{\rm T} \cdot \frac{\partial n}{\partial x} \right) \right)$$

Abhängig von:

- der Feldstärke E, der Temperaturspannung $U_{\rm T}$ sowie
- den Dichten und Gradienten der beweglichen Ladungsträger.

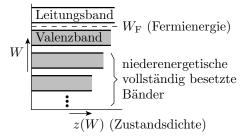
Der Gleichgewichtszustand für die Dichten und Gradienten der beweglichen Ladungen wird durch Dotierung eingestellt. Ungleichgewichte durch zu- und abfließende Ströme bauen sich innerhalb von us bis ms ab.

Feldstärken E entstehen durch Aufladung und äußere Spannungen.

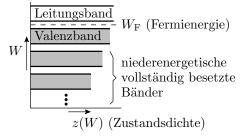
Empfohlene Literatur: Cordes, Waag und Heuck: Integrierte Schaltungen. Grundlagen - Prozesse - Design - Layout. Pearson Studium, 2011.

Undotiert (intrinsisch)

Bewegliche Ladungsträger



- Elektronen besitzen im Quantenmodell einen Zustand, dem eine Energie zugeordnet ist.
- Teilen sich Elektronen wie in einem Festkörper einen Raum, kann jeder Zustand nur mit einem Elektron besetzt sein.
- Der Zustandsraum ist in Bänder unterteilt und füllt sich bei T=0 von der niedrigsten Energie bis zur Fermienergie $W_{\rm F}$.



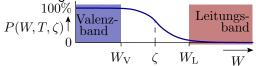
- Das äußerste voll besetzte Band heißt Valenzband und das darauf folgende Leitungsband.
- lacktriangle Beweglichkeit von Ladungsträgern verlangt freie Elektronenstände in der energetischen Nachbarschaft. Bei T=0 nur für Elektronen im Leitungsband erfüllt.
- Halbleiter sind Materialien mit bei T=0 vollem Valenz- und leerem Leitungsband. Bandlücke ca. $1 \dots 2$ eV.

Undotierte Halbleiter bei Raumtemperatur

Bei T>0 sind auch Zustände oberhalb der Fermienergie besetzt und Zustände unterhalb der Fermienergie frei. Die Besetztwahrscheinlichkeit gehorcht der Fermi-Verteilung:

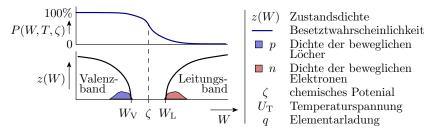
$$P(W, T, \zeta) = \left(e^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} + 1\right)^{-1}$$

 $(q - \text{Elementarladung}; U_{\text{T}} = k_{\text{B}} \cdot T - \text{Temperaturspannung}; q \cdot U_{\text{T}}$ mittlere thermisch Energie der Elektronen. Für Si bei $300\,\mathrm{K}$ ca. $26\,\mathrm{meV}$.



Das chemische Potential (stellt sich so ein, dass die Anzahl der freien Zustände im Valenzband gleich der Anzahl der besetzten Zustände im Leitungsband ist. Ladungsneutralität.

Dichte der beweglichen Ladungsträger



Löcher: Zustandsdichte Valenzband mal 1 - P(...)

$$p = \int_{0}^{W_{V}} (1 - P(W, T, \zeta)) \cdot z(W) \cdot dW$$

Bewegliche Elektronen: Zustandsdichte Leitungsband mal P(...)

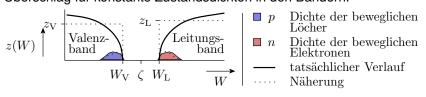
$$n = \int_{W_{\tau}}^{\infty} P(W, T, \zeta) \cdot z(W) \cdot dW$$

Boltzmannnäherung

Wenn das chemische Potential um mehr als die doppelte mittlere thermische Energie von den Bandkanten entfernt ist:

$$P(W, T, \zeta) = \left(e^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} + 1\right)^{-1} \approx \begin{cases} 1 - e^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} & \frac{W-\zeta}{q \cdot U_{\mathrm{T}}} < -2\\ e^{-\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} & \frac{W-\zeta}{q \cdot U_{\mathrm{T}}} > 2 \end{cases}$$

Uberschlag für konstante Zustandsdichten in den Bändern:



$$\begin{array}{lclcl} p & = & z_{\mathrm{V}} \cdot \int_{0}^{W_{\mathrm{V}}} \mathrm{e}^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} \cdot dW & & n & = & z_{\mathrm{L}} \cdot \int_{W_{\mathrm{L}}}^{\infty} \mathrm{e}^{\frac{\zeta-W}{q \cdot U_{\mathrm{T}}}} \cdot dW \\ p & = & z_{\mathrm{V}} \cdot q \cdot U_{\mathrm{T}} \cdot \mathrm{e}^{\frac{W_{\mathrm{V}}-\zeta}{q \cdot U_{\mathrm{T}}}} & & n & = & z_{\mathrm{L}} \cdot q \cdot U_{\mathrm{T}} \cdot \mathrm{e}^{\frac{\zeta-W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} \\ p & = & N_{\mathrm{V}} \cdot \mathrm{e}^{\frac{W_{\mathrm{V}}-\zeta}{q \cdot U_{\mathrm{T}}}} & & n & = & N_{\mathrm{L}} \cdot \mathrm{e}^{\frac{\zeta-W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} \end{array}$$

Silizium bei Raumtemperatur ($U_{\rm T} \approx 26\,{\rm meV}$)

Löcherdichte:
$$p = N_{V} \cdot e^{\frac{W_{V} - \zeta}{e^{U}_{T}}}$$

bewegl. Elektr.: $n = N_{L} \cdot e^{\frac{\zeta - W_{L}}{q \cdot U_{T}}}$ (3)

■ Die Boltzmannnäherung für 300K ($U_{\rm T} \approx 26\,{\rm meV}$) verlangt:

$$W_{\rm V} + 50 \,{\rm meV} < \zeta < W_{\rm L} - 50 \,{\rm meV}$$

- Für Si und 300K: $N_{\rm V}\approx 15\cdot 10^{18}\cdot {\rm cm}^{-3}$, $N_{\rm L}\approx 24\cdot 10^{18}\cdot {\rm cm}^{-3}$
- Daraus folgt, Näherung gilt für $n, p < 10^{18} \cdot \text{cm}^{-3}$.

Das Produkt $n \cdot p$ ist unabhängig vom chemischen Potential ζ

$$n \cdot p = n_{\rm i}^2 = N_{\rm V} \cdot N_{\rm L} \cdot e^{\frac{W_{\rm V} - W_{\rm L}}{q \cdot U_{\rm T}}} \tag{4}$$

 $(n_{\rm i}$ – intrinsische Ladungsträgerdichte). Mit unserem Überschlag nehmen $N_{\rm V}$ und $N_{\rm L}$ proportional mit der Temperatur zu, in Wirklichkeit eher mit Exponent 1,5.

Die intrinsische Ladungsträgerdichte n_i^2 ist sehr temperaturabhängig.

Generation und Rekombination

Generation: Durch Energieaufnahme wird eine Valenzbandelektron zu einem Leitungsbandelektron und hinterlässt einen unbesetzten Zustand (Loch).

Rekombination: Wechsel eines besetzten Leitungsbandelektrons in ein Loch durch Energieabgabe.

Im Gleichgewicht:

$$n \cdot p = n_i^2$$

ist die Generations- gleich der Rekombinationsgeschwindigkeit.

Für Silizium beträgt die intrinsische Ladungsträgerdichte bei 300 K $n_{\rm i} \approx 2 \cdot 10^9 {\rm cm}^{-3}$ und nimmt mit $\approx 7\%/{\rm K}$ zu.

Nettorekombinationsrate

Ungleichgewichte, z.B. durch Ladungszu- oder Abfluss bauen sich mit den Relaxationszeiten $\tau_{\rm p/n}$ ab:

$$p(t) = p_0 + (p(t_0) - p_0) \cdot e^{-\frac{t - t_0}{\tau_p}}$$

$$n(t) = n_0 + (n(t_0) - n_0) \cdot e^{-\frac{t - t_0}{\tau_p}}$$

Die Nettorekombinationsraten ist die Differenzen zum stationären Zustand geteilt durch die Zeitkonstante:

$$r_{\rm p} = \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{p - p_0}{\tau_{\rm p}}; \quad r_{\rm n} = \frac{\mathrm{d}n}{\mathrm{d}t} = \frac{n - n_0}{\tau_{\rm p}} \tag{5}$$

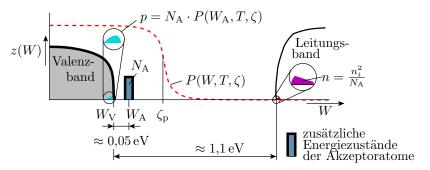
sind im Gleichgewichtszustand null und ansonsten proportional zur Größe der Gleichgewichtsstörung $p-p_0$ bzw. $n-n_0$.

Für $p < p_0$ bzw. $n < n_0$ ist die Nettorekombinationsrate negativ und eigentlich eine Generationsrate.

Dotiert (extrinsisch)

Dotierung mit Akzeptoren (p-Gebiete)

Einbau von Atomen mit drei Außenelektronen, z.B. Bor, in das Diamantgitter von Silizium. Die Energie, ein viertes Außenelektron aufzunehmen, ist $\approx 2 \cdot q \cdot U_{\rm T}$ größer als die max. Energie im Valenzband $W_{\rm V}$.



Ladungsdichten und $\zeta_{\rm p}$ in p-Gebieten

Das chemische Potential stellt sich so ein, dass die Löcheranzahl im Valenzband gleich der Anzahl der besetzten Akzeptor- und Leitungsbandzustände ist:

$$\begin{array}{ll} p & = & N_{\mathrm{V}} \cdot \mathrm{e}^{\frac{W_{\mathrm{V}} - \zeta_{\mathrm{p}}}{q \cdot U_{\mathrm{T}}}} = N_{\mathrm{A}} \cdot P\left(W_{\mathrm{A}}, T, \zeta_{\mathrm{p}}\right) + n \\ & \approx & N_{\mathrm{A}} \cdot \left(1 - \mathrm{e}^{\frac{W_{\mathrm{A}} - \zeta_{\mathrm{p}}}{q \cdot U_{\mathrm{T}}}}\right) \quad \text{wegen } n \ll N_{\mathrm{A}} \cdot \left(1 - \mathrm{e}^{\frac{W_{\mathrm{A}} - \zeta_{\mathrm{p}}}{q \cdot U_{\mathrm{T}}}}\right) \\ & \approx & N_{\mathrm{A}} \quad \text{Boltzmannnäherung für } \frac{W_{\mathrm{A}} - \zeta_{\mathrm{p}}}{q \cdot U_{\mathrm{T}}} < -2 \end{array}$$

Chemisches Potential für die Boltzmannnäherung:

$$\zeta_{\rm p} \approx W_{\rm V} + q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm V}}{N_{\rm A}}\right) \quad N_{\rm A} \ll N_{\rm V}$$
(6)

In einem mit Akzeptoren dotierten (p-) Gebiet sind Löcher die Majoritätsladungsträger.

Die Dichte der Minoritätsladungsträger strebt durch Generation bzw. Rekombination gegen Gl. 4:

$$n = \frac{n_{\rm i}^2}{p}$$

Richtwerte Si 300K:

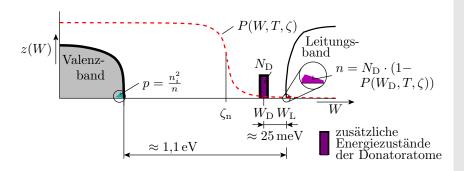
Akzeptordichte in ${ m cm}^{-3}$	10^{14}	10^{16}	10^{18}
Majoritätsladungsträgerdichte (p) in cm^{-3}	10^{14}	10^{16}	$5 \cdot 10^{17}$
Minoritätsladungsträgerdichte (n) in ${ m cm}^{-3}$	$4 \cdot 10^4$	$4 \cdot 10^2$	8

Für hohe Dotierung (ab $10^{18} {\rm cm}^{-3}$) sind die zusätzlichen Akzeptorzustände nur teilweise besetzt und p kleiner als die Akzeptordichte

$$p = N_{\mathcal{A}} \cdot \left(1 - e^{\frac{W_{\mathcal{A}} - \zeta_{\mathcal{P}}}{q \cdot U_{\mathcal{T}}}}\right) < N_{\mathcal{A}}$$

Dotierung mit Donatoren (n-Gebiete)

Einbau von Atomen mit fünf Außenelektronen, z.B. Phosphor, in das Diamantgitter von Silizium. Die Energie, das fünfte Außenelektron abzugeben, ist $\approx q \cdot U_{\rm T}$ kleiner als die min. Energie im Leitungsband $W_{\rm L}$.



Ladungsdichten und ζ_n in n-Gebieten

Das chemische Potential stellt sich so ein, dass die Elektronenanzahl im Leitungsband gleich der Anzahl der freien Donator- und Valenzbandzustände ist:

$$\begin{array}{ll} n & = & N_{\mathrm{L}} \cdot \mathrm{e}^{\frac{\zeta_{\mathrm{n}} - W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} = N_{\mathrm{D}} \cdot \left(1 - P\left(W_{\mathrm{D}}, T, \zeta_{\mathrm{n}}\right)\right) + p \\ & \approx & N_{\mathrm{D}} \cdot \left(1 - \mathrm{e}^{-\frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}}}\right) \quad \text{wegen } p \ll N_{\mathrm{D}} \cdot \left(1 - \mathrm{e}^{-\frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}}}\right) \\ & \approx & N_{\mathrm{D}} \quad \text{(Boltzmannnäherung für } \frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}} > 2 \end{array}$$

Chemisches Potential für die Boltzmannnäherung:

$$\zeta_n \approx W_{\rm L} - q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm L}}{N_{\rm D}}\right)$$
(7)

In einem mit Donatoren dotierten (n-) Gebiet sind bewegliche Elektronen die Majoritätsladungsträger.

Die Dichte der Minoritätsladungsträger strebt durch Generation bzw. Rekombination gegen Gl. 4:

$$p = \frac{n_{\rm i}^2}{n}$$

Richtwerte Si 300K:

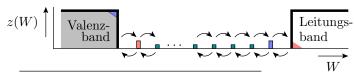
Donatordichte in ${ m cm}^{-3}$	10^{14}	10^{16}	10^{18}
Majoritätsladungsträgerdichte (n) in ${ m cm}^{-3}$	10^{14}	10^{16}	10^{18}
Minoritätsladungsträgerdichte (p) in ${ m cm}^{-3}$	$4 \cdot 10^4$	$4 \cdot 10^2$	4

Für hohe Dotierung (ab $10^{18} {\rm cm}^{-3}$) sind die zusätzlichen Donatorzustände nur teilweise unbesetzt und n kleiner als die Donatordichte

$$n = N_{\mathrm{D}} \cdot \left(1 - e^{-\frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}}}\right) < N_{\mathrm{A}}$$

Tiefe Störstellen

Gleichmäßig in der Bandlücke verteile zusätzliche Energiezustände durch Gitterfehler und Verunreinigungen.



- tiefe Störstellen
- In der Regel erfolgt die Energieaufnahme und -abgabe in kleinen Schritten über die tiefen Störstellen.
- Je reiner ein Halbleiter, desto größer sind die Relaxationszeiten $\tau_{\rm p}$ und $\tau_{\rm n}$, mit denen die Gleichgewichtsstörungen abgebaut werden.

Zusammenfassung

Mit der Boltzmannnäherung für Si und 300K ($U_{\rm T}\approx 26\,{\rm meV}$, $W_{\rm V}+50\,{\rm meV}<\zeta< W_{\rm L}+50\,{\rm meV}$, $N_{\rm V}\approx 15\cdot 10^{18}\cdot{\rm cm}^{-3}$ und $N_{\rm L}\approx 24\cdot 10^{18}\cdot{\rm cm}^{-3}$) betragen im undotierten Halbleiter die Dichten der Löcher und der beweglichen Elektronen:

$$p = N_{\rm V} \cdot e^{\frac{W_{\rm V} - \zeta}{q \cdot U_{\rm T}}}$$

$$n = N_{\rm L} \cdot e^{\frac{\zeta - W_{\rm L}}{q \cdot U_{\rm T}}}$$

Im Gleichgewichtszustand:

$$n \cdot p = n_{\rm i}^2 = N_{\rm V} \cdot N_{\rm L} \cdot e^{\frac{W_{\rm V} - W_{\rm L}}{q \cdot U_{\rm T}}} = n_{\rm i}^2$$

 $n_{\rm i}$ – intrinsische Ladungsträgerdichte, für Si bei 300 K $n_{\rm i} \approx 2 \cdot 10^9 {\rm cm}^{-3}$. Abnahme mit etwa 7% pro Kelvin zu.

Eine Akzeptordichte $N_{\rm A} \ll N_{\rm V}$ ändert das Gleichgewicht in:

$$p = N_{\rm A}; \quad n = \frac{n_{\rm i}^2}{N_{\rm A}}$$
 $\zeta_{\rm p} \approx W_{\rm V} + q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm V}}{N_{\rm A}}\right)$

Eine Donatordichte $N_{\rm D} \ll N_{\rm L}$ ändert das Gleichgewicht in:

$$n = N_{\rm D}; \quad p = \frac{n_{\rm i}^2}{N_{\rm D}}$$
 $\zeta_{\rm n} \approx W_{\rm L} - q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm L}}{N_{\rm D}}\right)$

Gleichgewichtsstörungen werden mit den Nettorekombinationsraten

$$r_{\mathrm{n}} = \frac{\mathrm{d}n}{\mathrm{d}t} = \frac{n-n_0}{\tau_{\mathrm{n}}}; \quad r_{\mathrm{p}} = \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{p-p_0}{\tau_{\mathrm{p}}}$$

abgebaut ($\tau_{\rm p/n}$ – Relaxionszeiten, bis zu Millisekunden).

Stromloser pn-Übergang

Suchen Sie die Gleichungen zusammen

Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot (\mu_{p} \cdot (\ldots) - \mu_{n} \cdot (\ldots))$$

Die Poisson-Gleichung, Gl. 2:

$$\frac{\partial E}{\partial x} = \dots \dots$$

Die Boltzmannnäherung für p und n als Funktion von ζ nach Gl. 3

Die Nettorekombinationsraten nach Gl. 5:

$$p - Gebiet : r_p = \frac{dp}{dt} = \dots, n - Gebiet : r_n = \frac{dn}{dt} = \dots$$

Zur Kontrolle

Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot \left(\mu_{\mathbf{p}} \cdot \left(p \cdot E + U_{\mathbf{T}} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\mathbf{n}} \cdot \left(n \cdot E + U_{\mathbf{T}} \cdot \frac{\partial n}{\partial x} \right) \right)$$

Die Boltzmannnäherungen für die Elektronen- und die Löcherdichten nach Folie 17:

$$p = N_{V} \cdot e^{\frac{W_{V} - \zeta}{q \cdot U_{T}}}$$

$$n = N_{L} \cdot e^{\frac{\zeta - W_{L}}{q \cdot U_{T}}}$$

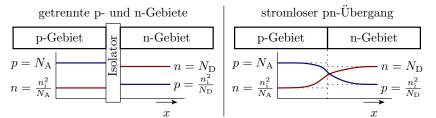
Die Poisson-Gleichung, Gl. 2:

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$$

Die Nettorekombinationsraten nach Gl. 5:

$$p - Gebiet : r_p = \frac{dp}{dt} = \frac{p - p_0}{\tau_p}, \ n - Gebiet : r_n = \frac{dn}{dt} = \frac{n - n_0}{\tau_p}$$

Verbindung eines p- und eines n-Gebiets



- Der Dichtegradient an der Übergangsstelle bewirkt, das aus dem p-Gebiet Elektronen und aus dem n-Gebiet Löcher in das andere Gebiet diffundieren.
- Es entsteht ein elektrisches Feld, das einen Driftstrom verursacht, der den Diffusionsstrom kompensiert.
- Die im Verbindungsmoment durch Diffusion verursache Erhöhung von $n \cdot p \gg n_i^2$ wird innerhalb weniger Millisekunden durch Rekombination abgebaut.

Feldstärke und Ladungsdichte

Im stationären Gleichgewicht heben sich überall die Elektronen- und Löcherströme auf. Elektronenstromdichte nach Gl. 1:

$$J_{\rm n} = 0 = -q \cdot \mu_{\rm n} \cdot \left(n \cdot E + U_{\rm T} \cdot \frac{\partial n}{\partial x} \right) \tag{8}$$

Die Änderung der Elektronendichte ergibt sich aus der Änderung des Abstands des chemischen Potentials zum Leitungsband:

$$\frac{\partial n}{\partial x} = \frac{\partial \left(N_{\rm L} \cdot e^{\frac{\zeta_{\rm n} - W_{\rm L}}{q \cdot U_{\rm T}}} \right)}{\partial x} = \frac{n}{q \cdot U_{\rm T}} \cdot \left(\frac{\partial \zeta_{\rm n}}{\partial x} - \frac{\partial W_{\rm L}}{\partial x} \right) = -\frac{n}{q \cdot U_{\rm T}} \cdot \frac{\partial W_{\rm L}}{\partial x}^*$$

(*mit Festlegung $\zeta={\rm konst.}$). Eingesetzt in Gl. 8 ergibt sich, dass die Feldstärke im stromlosen pn-Übergang proportional zur Änderung der Leitungsbandenergie abnimmt:

$$0 = n \cdot E - U_{\rm T} \cdot \frac{n}{a \cdot U_{\rm T}} \cdot \frac{\partial W_{\rm L}}{\partial x}, \quad E = \frac{1}{a} \cdot \frac{\partial W_{\rm L}}{\partial x}$$

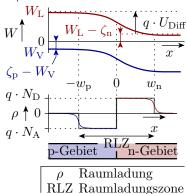
Diffusionsspannung und Raumladung

Die Diffusionsspannung

$$U_{\text{Diff}} = -\int_{-w_{\text{p}}}^{w_{\text{n}}} E \cdot dx = -\frac{1}{q} \cdot \int_{-w_{\text{p}}}^{w_{\text{n}}} \frac{\partial W_{\text{L}}}{\partial x} \cdot dx = \frac{\zeta_{\text{n}} - \zeta_{\text{p}}}{q}$$

ist das Intergral über die Feldstärke am stromlosen pn-Übergang. In dem Bereich, in dem das chemische Potential von den Bandkanten weiter entfernt ist, ist die Dichte der beweglichen Ladungsträger klein gegenüber den ortsfesten Störstellenatomen. Näherungsweise konstante Raumladung:

- **p**-Gebiet: $\rho \approx -q \cdot N_{\rm A}$
- n-Gebiet: $\rho \approx q \cdot N_{\rm D}$.



Feldstärke und Sperrschichtbreite

Bei konstanter Raumladung nimmt nach Gl. 2 (Poisson-Gl.):

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$$

die Feldstärke im p-Gebiet proportional mit $-q\cdot N_{\rm A}$ ab und im n-Gebiet mit $q\cdot N_{\rm D}$ zu (Dreieckverlauf) .

Abfall p-Gebiet:

$$\frac{\partial E}{\partial x} = \frac{-q \cdot N_{\rm A}}{\varepsilon} = \frac{-E_{\rm max}}{w_{\rm p}}$$

Anstieg n-Gebiet:

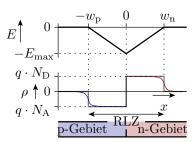
$$\frac{\partial E}{\partial x} = \frac{q \cdot N_{\rm D}}{\varepsilon} = \frac{E_{\rm max}}{w_{\rm n}}$$

Ladungsneutralität:

$$N_{\rm A} \cdot w_{\rm p} = N_{\rm D} \cdot w_{\rm n}$$

Diffusionsspannung:

$$U_{\mathrm{Diff}} = \frac{1}{2} \cdot E_{\mathrm{max}} \cdot (w_{\mathrm{p}} + w_{\mathrm{n}})$$



Auflösung des Gleichungssystems nach den Breiten der Raumladungszonen:

$$w = w_{\rm p} + w_{\rm n} = \sqrt{\frac{2 \cdot \varepsilon \cdot U_{\rm Diff}}{q} \cdot \left(\frac{1}{N_{\rm A}} + \frac{1}{N_{\rm D}}\right)}$$

$$w_{\rm p} = \frac{w \cdot N_{\rm D}}{N_{\rm D} + N_{\rm A}}, \quad w_{\rm n} = \frac{w \cdot N_{\rm A}}{N_{\rm D} + N_{\rm A}}$$

$$(9)$$

Maximale Feldstärke:

$$E_{\text{max}} = \frac{w_{\text{p}} \cdot q \cdot N_{\text{A}}}{\varepsilon} = \frac{w_{\text{n}} \cdot q \cdot N_{\text{D}}}{\varepsilon} = \frac{2 \cdot U_{\text{Diff}}}{w}$$

- Bei gleicher Dotierung: $w_p = w_n$.
- Bei ungleicher Dotierung breitet sich die Raumladungszone hauptsächlich im niedriger dotierten Gebiet aus.

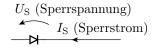
pn-Übergang, Sperrbereich

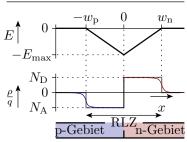
Sperrbereich

Eine Sperrspannung $U_{\rm S}>0$ vergrößert

$$\int_{-W_{\mathbf{p}}}^{w_{\mathbf{n}}} E \cdot \mathrm{d}x$$

von U_{Diff} auf $U_{\mathrm{Diff}}+U_{\mathrm{S}}$. Anstieg und Abfall von E verursacht durch die Raumladungen $\rho=q\cdot N_{\mathrm{A}}$ bzw. $\rho=q\cdot N_{\mathrm{D}}$ bleiben.





In den Gleichungen zur Bestimmung von w, $w_{\rm p}$, $w_{\rm n}$ und $E_{\rm max}$ ist die Diffusionsspannung durch $U_{\rm Diff}+U_{\rm S}$ zu ersetzen:

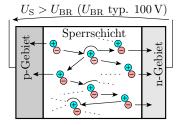
$$E_{\text{max}} = \frac{2 \cdot (U_{\text{Diff}} + U_{\text{S}})}{w}$$

$$E_{\text{max}} = \frac{2 \cdot (U_{\text{Diff}} + U_{\text{S}})}{w} = \sqrt{\frac{2 \cdot q \cdot (U_{\text{Diff}} + U_{\text{S}})}{\varepsilon \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}}$$
(10)

$$w = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\text{Diff}} + U_{\text{S}})}{q}} \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)$$

$$w_{\text{p}} = \frac{w \cdot N_{\text{D}}}{N_{\text{D}} + N_{\text{A}}}, \quad w_{\text{n}} = \frac{w \cdot N_{\text{A}}}{N_{\text{D}} + N_{\text{A}}}$$
(11)

Lawinendurchbruch



Häufigste Durchbruchart. Bei hohen Feldstärken nehmen die bewegten Ladungsträger auf ihrem Weg bis zum nächsten Gitterzusammenstoß so viel Energie auf, das es für die Generierung eines Elektronen-Lochpaars ausreicht. Die Dichte der beweglichen Ladungsträger in der Raumladungszone steigt mit weiterer Erhöhung der Sperrspannung exponentiell an.

1. Halbleiter

Spannungsfestigkeit

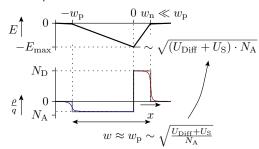
Die maximale Feldstärke $E_{\rm max}$ muss unterhalb des Wertes für den Durchbruch $E_{\rm BR}$ bleiben:

$$E_{\text{max}} = \frac{2 \cdot (U_{\text{Diff}} + U_{\text{S}})}{w} = \sqrt{\frac{2 \cdot q \cdot (U_{\text{Diff}} + U_{\text{S}})}{\varepsilon \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}} < E_{\text{BR}}$$

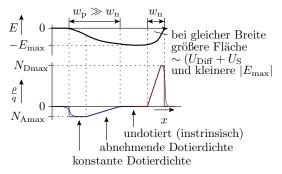
Für gegebene $U_{\rm S}$

- große Breite
- niedrige Dotierung.

Einseitig niedrige Dotierung reicht, weil sich die Sperrschicht hauptsächlich im niedrig dotierten Gebiet ausbreitet.



Sanfte Dotierprofile und intrinsischer Übergang



Aus der Poisson-Gl. 2 $\frac{\partial E}{\partial x}=\frac{\rho}{\varepsilon}$ folgt, dass bei abnehmender Raumladung, die in der Verarmungszone gleich der Dotierdichte ist, E schwächer und in einer intrinsischen Zwischenschicht gar nicht zunimmt. Bei gleicher Sperrschichtbreite und Sperrspannung geringeres Feldstärkemaximum.

Sperrstrom

Der Sperrstrom ist ein Generierungsstrom mit der Stromdichte:

$$J_{\mathrm{S}} = \frac{I_{\mathrm{S}}}{A} pprox q \cdot (w_{\mathrm{n}} \cdot r_{\mathrm{n}} + w_{\mathrm{p}} \cdot r_{\mathrm{p}})$$

mit der Generationsrate¹ im p-Gebiet:

$$-r_{\rm p} = -\frac{\mathrm{d}p_{\rm p}}{\mathrm{d}t} = \frac{N_{\rm A} - p_{\rm p}}{\tau_{\rm p}} \approx \frac{N_{\rm A}}{\tau_{\rm p}}$$

und im n-Gebiet:

$$-r_{\rm n} = -\frac{\mathrm{d}n_{\rm n}}{\mathrm{d}t} = \frac{N_{\rm D} - n_{\rm n}}{\tau_{\rm n}} \approx \frac{N_{\rm D}}{\tau_{\rm n}}$$

 $(\dots_p - im p - Gebiet; \dots_p; im n - Gebiet; \tau - Relaxionszeit; Näherungsan$ nahmen: Majoritätsdichte viel kleiner Dotierdichten). Zusammen:

$$J_{\rm S} = \frac{I_{\rm S}}{A} \approx q \cdot \left(\frac{w_{\rm n} \cdot N_{\rm D}}{\tau_{\rm n}} + \frac{w_{\rm p} \cdot N_{\rm A}}{\tau_{\rm p}}\right) \tag{12}$$

 $^{^1}$ Die Generierungsrate für $n \cdot p < n_i^2$ ist minus Nettorekombinationsrate.

Spannungsabhängigkeit des Sperrstroms und Sperrschichtkapazität

Breiten der Raumladungszonen

$$w \sim w_{\rm p} \sim w_{\rm n} \sim \sqrt{U_{\rm Diff} + U_{\rm S}}$$

Sperrstrom:

$$J_{\rm S} \sim w \sim \sqrt{U_{\rm Diff} + U_{\rm S}}$$

wird meist vernachlässigt.

Sperrschichtkapazität:

$$C = \varepsilon \cdot \frac{A}{w} \sim \frac{1}{\sqrt{U_{\text{Diff}} + U_{\text{S}}}}$$

wichtig für Analyse im Frequenzbereich; Ausnutzung in Kapazitätsdioden.

Zusammenfassung

Sperrschichtbreite:

$$w = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\text{Diff}} + U_{\text{S}})}{q} \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}$$

Maximale Feldstärke:

$$E_{\text{max}} = \frac{2 \cdot \left(U_{\text{Diff}} + U_{\text{S}}\right)}{w} = \sqrt{\frac{2 \cdot q \cdot \left(U_{\text{Diff}} + U_{\text{S}}\right)}{\varepsilon \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}}$$

- Bei zu hoher Feldstärke Durchbruch.
- Erhöhung der Spannungsfestigkeit durch einseitig niedrige Dotierung, sanfte Dotierprofile und/oder eine intrinsische Schicht zwischen den dotierten Gebieten.
- Sperrstrom vernachlässigbar.
- Spannungsabhängige Sperrkapazität.

pn-Übergang Durchlassbereich

Suchen Sie die Gleichungen zusammen

Stromdichte für Halbleiter nach Gl. 1:

1. Halbleiter

$$J = q \cdot (\mu_{\mathbf{p}} \cdot (\ldots) - \mu_{\mathbf{n}} \cdot (\ldots))$$

Die Boltzmannnäherungen für die Elektronen- und die Löcherdichten Gl. 3:

Is Die Gleichgewichtsverscheibung des Produkts $n \cdot p$ unter der Annahme, dass sich die chemischen Potentiale für Löcher und Elektronen um $\zeta_{\rm n} - \zeta_{\rm p} = q \cdot U_{\rm D}$ unterscheiden ($\zeta_{\rm p/n}$ – chemisches Potential zur Löcher- / Elektronendichte; $U_{\rm D}$ – Spannung in Durchlassrichtung; q – Elemetarladung):

$$n \cdot p = n_i^2 \cdot \dots$$

Zur Kontrolle

1. Halbleiter

Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot \left(\mu_{\rm p} \cdot \left(p \cdot E + U_{\rm T} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\rm n} \cdot \left(n \cdot E + U_{\rm T} \cdot \frac{\partial n}{\partial x} \right) \right)$$

Die Boltzmannnäherungen für die Elektronen- und die Löcherdichten Gl. 3:

$$\begin{array}{ll} p & \approx & N_{\rm V} \cdot {\rm e}^{\frac{W_{\rm V} - \zeta_{\rm p}}{q \cdot U_{\rm T}}} & {\rm f\"{u}r} \; {\rm e}^{\frac{W_{\rm V} - \zeta_{\rm p}}{q \cdot U_{\rm T}}} < {\rm e}^{-2} \approx 0.1^* \\ \\ n & \approx & N_{\rm L} \cdot {\rm e}^{\frac{\zeta_{\rm n} - W_{\rm L}}{q \cdot U_{\rm T}}} & {\rm f\"{u}r} \; {\rm e}^{\frac{\zeta_{\rm n} - W_{\rm L}}{q \cdot U_{\rm T}}} < {\rm e}^{-2} \approx 0.1^* \end{array}$$

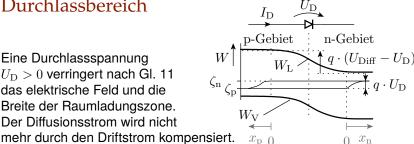
(*- Gültigkeitsvoraussetzung).

 \blacksquare Gleichgewichtsverschiebung des Produkts $n\cdot p$ für $\zeta_{\rm n}-\zeta_{\rm p}=q\cdot U_{\rm D}$

$$n \cdot p = \underbrace{N_{\mathbf{V}} \cdot N_{\mathbf{L}} \cdot \mathbf{e}^{-\frac{W_{\mathbf{L}} - W_{\mathbf{V}}}{q \cdot U_{\mathbf{T}}}}}_{n_{\mathbf{i}}^{2}} \cdot \underbrace{\mathbf{e}^{\frac{\zeta_{\mathbf{n}} - \zeta_{\mathbf{p}}}{q \cdot U_{\mathbf{T}}}}}_{\underbrace{U_{\mathbf{D}}}_{U_{\mathbf{T}}}$$

Durchlassbereich

Eine Durchlassspannung $U_{\rm D} > 0$ verringert nach Gl. 11 das elektrische Feld und die Breite der Raumladungszone. Der Diffusionsstrom wird nicht



Unter der Annahme, keine Rekombination in der Sperrschicht², behalten die chemisches Potentiale der in das andere Gebiet diffundierenden Ladungsträger die Differenz $\zeta_n - \zeta_p = q \cdot U_D$. Vergrößerung von $n \cdot p$ bis zum Ende der Sperrschicht:

$$n \cdot p \approx n_{\rm i}^2 \cdot {\rm e}^{\frac{U_{\rm D}}{U_{\rm T}}}$$

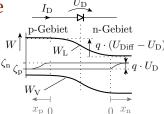
²Aufgrund der großen Dichtegradienten diffundieren die Ladungsträger sehr schnell durch die Sperrschicht.

Hinter der Raumladungszone

Majoritätsdichte:

$$p_{\rm p}(x_{\rm p} \ge 0) = N_{\rm A}$$

$$n_{\rm n}(x_{\rm n} \ge 0) = N_{\rm D}$$



Minoritätsdichteerhöhung am Ende der Raumladungszone:

$$\begin{split} n_{\mathrm{p}}\left(x_{\mathrm{p}}=0\right) &=& n_{\mathrm{p}0}\cdot\mathrm{e}^{\frac{U_{\mathrm{D}}}{U_{\mathrm{T}}}} \; \mathrm{mit} \; n_{\mathrm{p}0} = \frac{n_{\mathrm{i}}^{2}}{N_{\mathrm{A}}} \\ p_{\mathrm{n}}\left(x_{\mathrm{n}}=0\right) &=& p_{\mathrm{n}0}\cdot\mathrm{e}^{\frac{U_{\mathrm{D}}}{U_{\mathrm{T}}}} \; \mathrm{mit} \; p_{\mathrm{n}0} = \frac{n_{\mathrm{i}}^{2}}{N_{\mathrm{D}}} \end{split}$$

Weiterdiffusion der Minioritätsladungsträger im Bahngebiet:

- Elektronen im p-Gebiet: $J_{\rm n} = q \cdot \mu_{\rm n} \cdot U_{\rm T} \cdot \frac{d \, n_{\rm p}(x_{\rm p})}{d \, x_{\rm p}}$
- Löcher im n-Gebiet: $J_{\rm p} = q \cdot \mu_{\rm p} \cdot U_{\rm T} \cdot \frac{d \, p_{\rm n}(x_{\rm n})}{d \, x_{\rm m}}$

Die Dichtegradienten $\neq 0$ entstehen durch Rekombination.

Minoritätendichten $x_{\rm p/n} \ge 0$

Diffussionsstromdichten:

$$J = J_{\rm n} + J_{\rm p}$$

p-Gebiet	n-Gebiet
$W \mid \frac{P}{W_{\rm I}}$	$q \cdot (U_{\mathrm{Diff}} - U_{\mathrm{D}})$
ζη	$q \cdot U_{ m D}$
y_{p}	$0 x_n$
VV ← P ()	

	Diffusionsstromdichte	Abnahme durch Rekombination	
р	$J_{\rm n} = q \cdot \mu_{\rm n} \cdot U_{\rm T} \cdot \left. \frac{\partial n_{\rm p}(x_{\rm p})}{\partial x_{\rm p}} \right _{x_{\rm p}=0}$	$\frac{\partial J_{\mathbf{n}}}{\partial x_{\mathbf{p}}} = q \cdot r_{\mathbf{p}} = q \cdot \frac{n_{\mathbf{p}}(x_{\mathbf{p}}) - n_{\mathbf{p}0}}{\tau_{\mathbf{p}}}$	
n	$J_{p} = q \cdot \mu_{p} \cdot U_{T} \cdot \frac{\partial p_{n}(x_{n})}{\partial x_{n}} \Big _{x_{n}=0}$	$\frac{\partial J_{p}}{\partial x_{n}} = q \cdot r_{n} = q \cdot \frac{p_{n}(x_{n}) - p_{n0}}{\tau_{n}}$	

$$\textbf{I} \ \ \mathsf{DGL} \ \mathsf{Min.\text{-}Dichte} \ \mathsf{p\text{-}Gebiet:} \ \frac{\partial^2 n_\mathrm{p}(x_\mathrm{p})}{\partial \, x_\mathrm{p}^2} = \frac{n_\mathrm{p}(x_\mathrm{p}) - n_\mathrm{p0}}{\mu_\mathrm{n} \cdot U_\mathrm{T} \cdot \tau_\mathrm{p}}$$

2 DGL Min.-Dichte n-Gebiet:
$$\frac{\partial^2 p_n(x_n)}{\partial x_n^2} = \frac{p_n(x_n) - p_{n0}}{\mu_p \cdot U_T \cdot \tau_n}$$

Lösung der DGLs für die Minoritätendichten:

1 p-Gebiet:
$$n_{\rm p}\left(x_{\rm p}\right) = k_{\rm p} \cdot {\rm e}^{\left[-\right]\frac{x_{\rm p}}{L_{\rm n}}} + n_{\rm p0} \; {\rm mit} \; L_{\rm n} = \sqrt{\mu_{\rm n} \cdot U_{\rm T} \cdot \tau_{\rm p}}$$

2 n-Gebiet:
$$p_n(x_p) = k_n \cdot e^{[-]\frac{x_n}{L_p}} + p_{n0} \text{ mit } L_p = \sqrt{\mu_p \cdot U_T \cdot \tau_n}$$

 $(L_{\rm n}$ – Diffusionslänge Elektronen im p-Gebiet; $L_{\rm p}$ – ... Löcher im n-Gebiet).

Lösung der DGLs für die Minoritätendichten:

I p-Gebiet:
$$n_{\rm p}\left(x_{\rm p}\right) = k_{\rm p} \cdot {\rm e}^{\left[-\right]\frac{x_{\rm p}}{L_{\rm n}}} + n_{\rm p0} \; {\rm mit} \; L_{\rm n} = \sqrt{\mu_{\rm n} \cdot U_{\rm T} \cdot \tau_{\rm p}}$$

2 n-Gebiet:
$$p_{\rm n}\left(x_{\rm p}\right) = k_{\rm n} \cdot {\rm e}^{[-]\frac{x_{\rm n}}{L_{\rm p}}} + p_{\rm n0} \; {\rm mit} \; L_{\rm p} = \sqrt{\mu_{\rm p} \cdot U_{\rm T} \cdot \tau_{\rm n}}$$

 $L_{\rm p}, L_{\rm p}$ – Diffusionslängen, Wege, bis zur Verringerung der Minoritätsüberschüsse auf das 1/e-fache.

Probe mit der Minioritätendichte im p-Gebiet:

$$\frac{\partial^2 \left(k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm p}}} + n_{\rm p0} \right)}{\partial x_{\rm n}^2} = \frac{k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm p}}}}{L_{\rm p}^2} \stackrel{!}{=} \frac{\left(k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm p}}} + n_{\rm p0} \right) - n_{\rm p0}}{L_{\rm p}^2} \sqrt{L_{\rm p}^2}$$

 $\dots e^{-\frac{x_n}{n}}$ physikalisch richtig, weil $p_n(x_n)$ mit x_n abnimmt.

$n_{\mathrm{p}}\left(x_{\mathrm{p}}\right), p_{\mathrm{n}}\left(x_{\mathrm{n}}\right)$	Minoritätendichte im p- bzw- n-Bahngebiet
$k_{\rm p},k_{\rm n}$	noch zu bestimmende Parameter
$ au_{ m p}, au_{ m n}$	Relaxionszeit im p- bzw- n-Gebiet
$\mu_{\rm p}, \mu_{\rm p}$	Beweglichkeit im p- bzw- n-Gebiet
$L_{ m n}$	Diffusionslänge Elektronen im p-Gebiet
$L_{ m p}$	Diffusionslänge Löcher im n-Gebiet

Bestimmung $k_{\rm D}$ aus Randbedingung $n_{\rm D} \left(x_{\rm D} = 0 \right) = n_{\rm D0} \cdot {\rm e}^{\frac{U_{\rm D}}{U_{\rm T}}}$:

$$n_{\text{p0}} \cdot e^{\frac{U_{\text{D}}}{U_{\text{T}}}} = k_{\text{p}} \cdot e^{-\frac{x_{\text{p}} = 0}{L_{\text{n}}}} + p_{\text{n0}}$$

$$k_{\text{p}} = n_{\text{p0}} \cdot \left(e^{\frac{U_{\text{D}}}{U_{\text{T}}}} - 1\right)$$

$$n_{\text{p}}(x_{\text{p}}) = n_{\text{p0}} \cdot \left(e^{\frac{U_{\text{D}}}{U_{\text{T}}}} - 1\right) \cdot e^{-\frac{x_{\text{p}}}{L_{\text{n}}}} + n_{\text{p0}}$$

Bestimmung k_n aus Randbedingung $p_n (x_n = 0) = p_{n0} \cdot e^{\frac{c_D}{U_T}}$:

$$p_{\rm n}(x_{\rm n}) = p_{\rm n0} \cdot \left(e^{\frac{U_{\rm D}}{U_{\rm T}}} - 1\right) \cdot e^{-\frac{x_{\rm n}}{L_{\rm p}}} + p_{\rm n0}$$

Durchlassstrom gleich Summe der Diffusionsströme bei $x_{p/n} = 0$:

$$J = J_{n} + J_{p} = q \cdot \left(\left. \mu_{n} \cdot U_{T} \cdot \frac{\partial n_{p} (x_{p})}{\partial x_{p}} \right|_{x_{p}=0} + \left. \mu_{p} \cdot U_{T} \cdot \frac{\partial p_{n} (x_{n})}{\partial x_{n}} \right|_{x_{n}=0} \right)$$

$$= \left(\frac{n_{p0} \cdot q \cdot \mu_{n} \cdot U_{T}}{L_{n}} + \frac{p_{n0} \cdot q \cdot \mu_{p} \cdot U_{T}}{L_{p}} \right) \cdot \left(e^{\frac{U_{D}}{U_{T}}} - 1 \right)$$

Shockley-Gleichung

Durchlassstromdichte (Shockley-Gleichung):

$$J_{\rm D} = J_{\rm s} \cdot \left(e^{\frac{U_{\rm D}}{U_{\rm T}}} - 1 \right) \tag{13}$$

mit der Sättigungsstromdichte

$$J_{\rm s} = \left(\frac{n_{\rm p0} \cdot q \cdot \mu_{\rm n} \cdot U_{\rm T}}{L_{\rm n}} + \frac{p_{\rm n0} \cdot q \cdot \mu_{\rm p} \cdot U_{\rm T}}{L_{\rm p}}\right)$$

Gleichgewichts- minoritätendichten	$n_{ m p0}=rac{n_{ m i}^2}{N_{ m A}}$	$p_{ m n0}=rac{n_{ m i}^2}{N_{ m D}}$
Diffusionslängen:	$L_{\rm n} = \sqrt{U_{\rm T} \cdot \mu_{\rm n} \cdot \tau_{\rm p}}$	$L_{\rm p} = \sqrt{U_{\rm T} \cdot \mu_{\rm p} \cdot \tau_{\rm n}}$

die wegen $U_{\rm T}=\frac{k_{\rm B}\cdot T}{g}$ und $n_{\rm i}^2\sim T^{2..3}\cdot {\rm e}^{-\frac{15000\,{\rm K}}{T}}$ sehr stark von der Temperatur T abhängt:

$$J_{\rm s} \sim T^{2,5..3,5} \cdot {\rm e}^{-\frac{15000\,{\rm K}}{T}}$$

 $(U_{\rm D}$ – Spannung in Durchlassrichtung; $U_{\rm T}$ – Temperaturspannung; $n_{\rm i}$ – instrinsische Ladungsträgerdichte).

Zusammenfassung Durchlassstromdichte

$$J_{\mathrm{D}} = J_{\mathrm{s}} \cdot \left(e^{\frac{U_{\mathrm{D}}}{U_{\mathrm{T}}}} - 1 \right)$$

$$J_{\mathrm{s}} = q \cdot U_{\mathrm{T}} \cdot n_{\mathrm{i}}^{2} \cdot \left(\frac{1}{N_{\mathrm{D}}} \cdot \sqrt{\frac{\mu_{\mathrm{p}}}{\tau_{\mathrm{n}}}} + \frac{1}{N_{\mathrm{A}}} \cdot \sqrt{\frac{\mu_{\mathrm{n}}}{\tau_{\mathrm{p}}}} \right)$$

$$n_{\mathrm{i}}^{2} = N_{\mathrm{V}} \cdot N_{\mathrm{L}} \cdot e^{\frac{W_{\mathrm{V}} - W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}}$$

Die Faktoren $U_{\rm T}$ und n_i^2 bewirken, dass die Sättigungsstromdichte $J_{\rm S}$ stark temperaturabhängig ist.

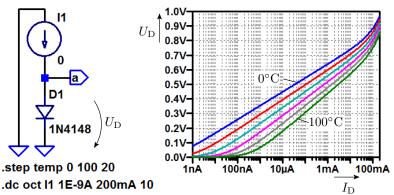
$\tau_{\mathrm{p}},\tau_{\mathrm{n}}$	Relaxionszeit im p- bzw- n-Gebiet
$\mu_{\mathrm{p}}, \mu_{\mathrm{p}}$	Beweglichkeit im p- bzw- n-Gebiet
$N_{\rm A},N_{ m D}$	Akzeptor- und Donatordichte im p- bzw- n-Gebiet
$U_{\rm T} = \frac{k_{\rm B} \cdot T}{q}$	Temperaturspannung
\overline{q}	Elementarladung
$n_{ m i}^2$	instrinsische Ladungsträgerdichte

Dioden

Spice-Modell

Einführendes Beispiel

Das mit LT-Spice mitgelieferte Modell der Diode 1N4148 hat im Durchlassbereich folgende Strom-Spannungs-Beziehung:



Im Sperrbereich ist der simulierte Strom null.

Die Beschreibung dieser Diode lautet:

Alle anderen Parameter haben die Standardwerte.

- Was bedeuten diese Parameter?
- Wie bestimmen Sie das Simulationsergebnis?
- Wie gut stimmt das Modellverhalten mit der Wirklichkeit überein?

Das Lernziel in diesem und den nächsten Abschnitten ist das Kennenlernen der Spice-Modelle und Spice-Parameter

- ihren Zusammenhang zu den physikalischen Modellen und
- ihre praktische Bedeutung in Schaltungen.

Spice-Parameter einer Diode

Berkeley-Spice-Modell für Halbleiterdioden, erweitert um eine genauere Modellierung des Durchbruchverhaltens und des Rekombinationsstroms. Letzte Spalte Diode aus dem Beispiel.

Param.	Spice	Bezeichnung	Std-W+ME	1N4148
$I_{ m S}$	Is	Sättigungsstrom	$10^{14}{\rm A}$	2,52nA
$R_{\rm S}$	Rs	Bahnwiderstand	0Ω	0.568Ω
	N	Emissionskoeffizient	1	1,75
	Tt	Transitzeit	0 ns	20ns
C_{S0}	Cjo	Kapazität für $U_{ m D}$ =0	0 pF	4pF
$U_{ m Diff}$	Vj	Diffusionsspannung	1 V	
	М	Kapazitätskoeffizient	1	.4
W_{g}	Eg	Bandabstand	1,11* eV	

(Std-W+ME Standardwert + Maßeinheit; *- Wert für Silizium)

2. Dioden

1. Spice-Modell

Param.	Spice	Bezeichnung	Std-W+E	1N4148
X_{TI}	Xti	Is-Temperaturkoeff.	3.0	
$k_{ m F}$	KF	Funkelrauschkoeff.	0	
A_{F}	Af	Funkelrauschexp.	1	
$f_{ m S}$	FC	Koeff. Bereichswechs. $C_{ m S}$	0.5	
	BV	Durchbr\mspice{Is}\mspic		ung
	Ibv	Strom bei $U_{ m BR}$	10 ⁻¹⁰ A	
	Tnom	Bezugstemperatur	27°C	
	Isr	RekombStromparam.	0 A	
	Nr	$I_{ m SR}$ -Emmisionskoeff.	2	
	Ikf	Wechsel Hochstromber.	∞ A	
	Tikf	lkf-Temperaturkoeff.	0/°C	
	Trs1	lin. Rs TempKoeff.	0/°C	
	Trs2	guad. Rs TempKoeff.	0/°C	

Grenzwerte

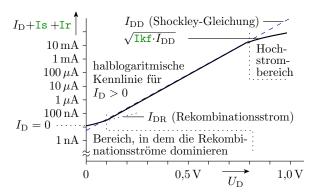
Zulässige Maximalwerte zur Kontrolle, dass die Diode im zulässigen Bereich betrieben wird.

Param.	Spice	Bezeichnung	Einheit	1N4148
	Vpk	Spitzensperrspannung (peak voltage)	V	75 V
	lpk	Spitzenstrom	Α	
	lave	mittlerer Strom	A	200 mA
		(average current)		
	Irms	Strom RMS	Α	
	diss	max. Verlustleistung	W	
	mfg	Hersteller		onSemi
	type	Diodenart		silicon

Weitere Angaben siehe [scad3.pdf]. Das Beispielmodell verwendet überwiegend die Standardwerte, z.B. Durchbruchspannung ∞ .

Durchlassbereich

Strom-Spannungsbeziehung Durchlassbereich



- Normaler Durchlassbereich: N\u00e4herungsweise G\u00fcltigkeit der Shockley-Gl. 13.
- Niedrigstrombereich: Hier dominieren die winzigen Rekombinationsströme in der Sperrschicht.
- Hochstrombereich: Halbierter logarithmischer Anstieg.

Annäherung durch parametrierte Gleichungen

Shockley-Gleichung mit Korrekturfaktor N für den log. Anstieg (normaler Durchlassbereich):

$$I_{\rm DD} = \operatorname{Is} \cdot \left(e^{\frac{U_{\rm D}}{\mathbb{N} \cdot U_{\rm T}}} - 1 \right) \tag{14}$$

Der zusätzliche Rekombinationsstrom in der Sperrschicht:

$$I_{\mathrm{DR}} = \mathtt{Isr} \cdot \left(\mathrm{e}^{rac{U_{\mathrm{D}}}{\mathtt{Nr} \cdot U_{\mathrm{T}}}} - 1
ight)$$

Halbierung des logarithmischen Anstiegs im Hochstrombereich:

 $(I_{\rm DD}$ – Diffusionsstrom nach Gl. 14; $I_{\rm KF}$ – Strom für den Übergang zum Hochstrombereich).

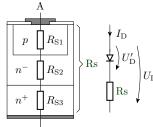
Zusätzliche Berücksichtigung der Bahnwiderstände

Bahnwiderstand Rs:

- typ. 10 m Ω (Leistungsdioden) bis 10Ω (Kleinsignaldioden).
- Modellierung durch einen zusätzlichen Spannungsabfall:

$$U_{
m D} = U_{
m D}' + {
m Rs} \cdot I_{
m D}$$

 $U_{\rm D} = U_{\rm D}' + {\rm Rs} \cdot I_{\rm D}$ $(U'_{\rm D}$ – Spannungsabfall pn-Übergang; n^- – niedrig dotiertes n-Gebiet; n^+ – hoch dotiertes n-Gebiet).



Temperaturverhalten

In der angepassten Shockley-Gl. 13

$$I_{\mathrm{D}}\left(U_{\mathrm{D}},T\right) = I_{\mathrm{S}}\left(T\right) \cdot \left(\mathrm{e}^{\frac{U_{\mathrm{D}}}{\mathbb{N}\cdot U_{\mathrm{T}}\left(T\right)}} - 1\right)$$

sind die Temperaturspannung (eingeführt auf S. 6)

$$U_{\mathrm{T}}(T) = \frac{k_{\mathrm{B}} \cdot T}{q} = 86,142 \frac{\mu \mathrm{V}}{\mathrm{K}} \cdot T$$

und nach Gl. 13 und 4 die Sättigungsstromdichte

$$I_{\rm S} \sim n_{\rm i}^2 \left(T \right) = N_{\rm V} \cdot N_{\rm L} \cdot {\rm e}^{\frac{W_{\rm L} - W_{\rm V}}{q \cdot U_{\rm T}}}$$

 $(k-{\sf Boltzmannkonstante},\,q-{\sf Elementarladung})$ und darin wieder $N_{\rm V}$ und $N_{\rm L}$ stark temperaturabhängig. Empirisches Modell:

$$I_{\mathrm{S}}\left(U_{\mathrm{D}},T\right) = \mathtt{Is}\left(\mathtt{Tnom}\right)\mathrm{e}^{\left(\frac{T}{\mathtt{Tnom}}-1\right)\cdot\frac{\mathtt{Eg}}{\mathtt{N}\cdot U_{\mathrm{T}}\left(T\right)}}\cdot\left(\frac{T}{\mathtt{Tnom}}\right)^{\frac{\mathtt{N}\mathtt{T}}{\mathtt{N}}}$$

(Is - Sättigungsstrom; Eg - Bandabstand; Tnom - Bezugstemperatur, Xti - Temperaturkoeffizient von Is).

Temperaturverhalten für Überschläge

Relative Stromzunahme mit der Temperatur:

$$\frac{1}{I_{\rm D}} \cdot \frac{\mathrm{d}I_{\rm D}}{\mathrm{d}T} \bigg|_{U_{\rm D}=\mathrm{const.}} \approx 0.04...0.08 \,\mathrm{K}^{-1} \tag{15}$$

■ Bei einer Temperaturerhöhung von $\approx 11\,\mathrm{K}$ verdoppelt sich der Strom bei gleicher Spannung.

Spannungsabnahme bei konstantem Strom:

$$\frac{\mathrm{d}U_{\mathrm{D}}}{\mathrm{d}T}\Big|_{I_{\mathrm{D}}=\mathrm{const.}} \approx -1.7\,\mathrm{mV/K}$$

■ Bei einer Temperaturerhöhung von $\approx 60\,\mathrm{K}$ verringert sich die Durchlassspannung bei gleichem Strom um 100 mV.

Bei höherem Leistungsumsatz sind Halbleitertemperaturen von 50...100°C normal.

Parameterbeispiele

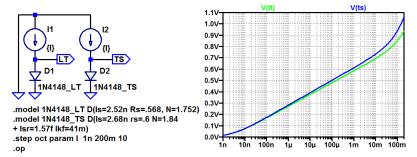
Die nachfolgenden Werte sind aus [1] und nicht von den Modellen aus dem Simulator.

Param.	Bezeichnung	1N4148	1N4001
Is	Sättigungsstrom	2,68 nA	14,1 nA
N	Emissionskoeffizient	1,84	1,99
Isr	RekombStromparam.	1,57 fA	0
Nr	Isr-Emissionskoeffizient	2	2
Ikf	Wechsel Hochstromber.	0,041 A	94,8 A
Rs	Bahnwiderstand	0,6 Ω	0,034 Ω

Der Temperaturkoeffizient xti von I_S , der Temperaturkoeffizient tikfdes Hochstromübergangs und die Temperaturkoeffizienten Trs1 und Trs2 des Bahnwiderstands haben die Standardwerte.

Simulation mit zwei Modellen desselben Bauteils

Für die Diode 1N4148, die auch im Praktikum eingesetzt wird, hat der Simulator andere Parameter, als in [1] angegeben sind.



Das Modell des Simulators »_LT« und das Modell »_TS« aus [1] verhalten sich auch unterschiedlich. Fertigungsstreuungen? Schaltungen so entwerfen, dass die Unterschiede nicht stören.

Sperr- und Durchbruchbereich

2. Dioden

Sperrstrom

Der Sperrstrom ist ein Generierungsstrom, der proportional zur Sperrschichtbreite zunimmt. Für einen abrupten Übergang Zunahme mit der Wurzel der Sperrspannung $U_{\rm S}=-U_{\rm D}$:

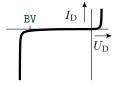
$$I_{
m S} \sim \sqrt{{
m Vj} + U_{
m S}}$$

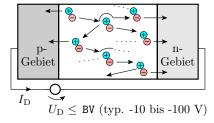
(vergl. Gl. 12). Empirische Spice-Annäherung:

$$I_{\rm S} = -{\tt Isr} \cdot \left(\left(1 + \frac{U_{\rm S}}{{\tt Vj}} \right)^2 + 0,005 \right)^{\frac{n}{2}}$$
 (16)

Param.	Bezeichnung	1N4148	1N4001
Isr	RekombStromparam.	1,57 fA	0
Vj	Vj Diffusionsspannung		0,325 V
M	Kapazitätskoeffizient	0,333	0,44

(Lawinen-) Durchbruch





Modellierung als exponentielle Stromzunahme mit zunehmender Sperrspannung $-U_D$ abzüglich der Durchbruchspannung BV:

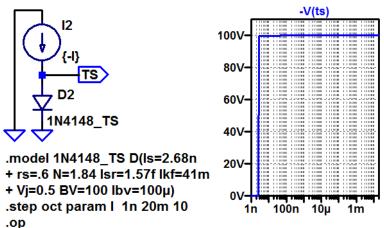
$$I_{\rm BR} = \text{Ibv} \cdot e^{\frac{U_{\rm S} - \text{BV}}{U_{\rm T}}} \tag{17}$$

Param.	Bezeichnung	1N4148	1N4001
BV	Durchbruchspannung	100 V	75 V
Ibv	Strom bei BV	100 μΑ	10 μΑ

3. Sperr- und Durchbruchbereich

Für den Sperrbereich vervollständigtes Modell mit den Parametern aus [1]:

.model 1N4148_TS D(Is=2.68n Rs=.6, N=1.84 Isr=1.57f Ikf=41m Vj=0.5 M=0.333 BV=100 Ibv=100µ)

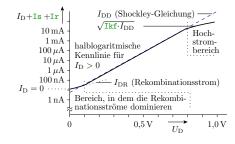


Zusammenfassung pn-Übergang DC-Verhalten

Durchlass-Diffusions-Strom nach Shockley-Gl.:

$$I_{\mathrm{DD}} = \mathtt{Is} \cdot \left(\mathrm{e}^{rac{U_{\mathrm{D}}}{\mathtt{N} \cdot U_{\mathrm{T}}}} - 1
ight)$$

 $\begin{array}{c} \blacksquare \text{ Rekombinationsstromanteil} \\ \text{ im Durchlassbereich:} \\ I_{\mathrm{DR}} = \mathtt{Isr} \cdot \left(\mathrm{e}^{\frac{U_{\mathrm{D}}}{\mathtt{Nr} \cdot U_{\mathrm{T}}}} - 1 \right) \end{array}$



 Isr ist gleichzeitig Proprotionalitätsfaktor für den Sperrstrom:

$$I_{\mathrm{S}} = -\mathtt{Isr} \cdot \left(\left(1 + rac{U_{\mathrm{S}}}{\mathtt{V} \mathtt{j}}
ight)^2 + 0,005
ight)^{rac{\mathtt{M}}{2}}$$

Hochstromeffekt:

$$I_{
m DDH} = rac{I_{
m DD}}{\sqrt{1 + rac{I_{
m DD}}{
m I_{
m rf}}}} pprox egin{cases} I_{
m DD} & I_{
m DD} \ll {
m Ikf} \ \sqrt{I_{
m DD} \cdot {
m Ikf}} & I_{
m DD} \gg {
m Ikf} \end{cases}$$

Relative Stromzunahme mit der Temperatur:

$$\frac{1}{I_{\rm D}} \cdot \frac{\mathrm{d}I_{\rm D}}{\mathrm{d}T} \bigg|_{U_{\rm D}=\mathrm{const.}} \approx 0.04...0.08 \,\mathrm{K}^{-1}$$

Spannungsabnahme bei konstantem Strom:

$$\frac{\mathrm{d} U_{\mathrm{D}}}{\mathrm{d} T} \bigg|_{I_{\mathrm{D}} = \mathrm{const.}} \approx -1.7 \,\mathrm{mV/K}$$

Durchbruchverhalten:

$$I_{\mathrm{BR}} = \mathtt{Ibv} \cdot \mathrm{e}^{rac{U_{\mathrm{S}} - \mathtt{BV}}{U_{\mathrm{T}}}}$$

 Für Bahnwiderstände außerhalb der Raumladungszone und der Difusionsladung gilt das ohmesche Gesetz.

Sperrschicht- und Diffusionskapazität

Sperrschichtkapazität

Die Sperrschichtkapazität leitet sich aus dem Modell des Plattenkondensators ab: $C = \varepsilon \cdot \frac{A}{m}$

Der Abstand ist die Sperrschichtbreite w. Für den abrupten pn-Übergang gilt nach Gl. 11:

$$w = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\text{Diff}} + U_{\text{S}})}{q} \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}$$

Das angelehnte Spice-Modell versteckt die Parameter ε , A, q, N_A und $N_{\rm D}$ in der Kapazität cjo für $U_{\rm S}=0$:

$$C_{\rm S} = \text{Cjo} \cdot \frac{1}{\left(1 + \frac{U_{\rm S}}{v_{\rm j}}\right)^{\rm M}} \tag{18}$$

Der Kapazitätskoeffizient M hängt vom Dotierverlauf ab. In Gl. 11 für den abrupten Übergang Quadratwurzel (M=0.5).

2. Dioden 4. Sperrschicht- und Diffusionskapazität

Bei zur Sperrschicht abnehmender Dotierung und instrischer Zwischenschicht ist M<0,5. Gl. 18 gilt auch im schwach durchlässigen Bereich bis $U_{\rm S} > - {\tt FC} \cdot {\tt Vj}$.

Für größere Durchlassspannungen $U_{\mathrm{S}} = -U_{\mathrm{S}} > -\mathtt{FC} \cdot \mathtt{Vj}$ lineare Annäherung:

lineare Verlängerung
$$C_{\rm s} \qquad \sim \frac{1}{\left(1 + \frac{U_{\rm s}}{V_{\rm j}}\right)^{\rm R}}$$

$$V_{\rm j} \quad \text{FC-Vj} \quad 0 \qquad U_{\rm s}$$

$$C_{S} = C_{jo} \cdot \begin{cases} \frac{1}{\left(1 + \frac{U_{S}}{V_{j}}\right)^{\mathbb{N}}} & \text{für } U_{S} > -FC \cdot V_{j} \\ \frac{1 - FC \cdot (1 - \mathbb{M}) - \frac{\mathbb{M} \cdot U_{S}}{V_{j}}}{(1 - FC)^{(1 + \mathbb{M})}} & \text{für } U_{S} \leq -FC \cdot V_{j} \end{cases}$$

$$(19)$$

Param.	Spice	Bezeichnung	1N4148	1N4001
C_{S0}	Cjo	Kapazität für $U_{ m D}$ =0	4 pF	25,9 pF
$U_{ m Diff}$	Vj	Diffusionsspannung	0,5 V	0,325 V
	М	Kapazitätskoeffizient	0,333	0,44
	FC	Koeff. Bereichswechsel $C_{ m S}$	0,5	0,5

1N4148 – Kleinsignaldiode; 1N4001 – Gleichrichterdiode aus [1].

Diffusionskapazität

Im Durchlassbereich befindet sich in der Verarmungszone eine vom Strom abhängige Diffusionsladung:

$$Q_{\mathrm{D}} = \mathrm{Tt} \cdot I_{\mathrm{DD}} \ \mathrm{mit} \ I_{\mathrm{DD}} pprox I_{\mathrm{S}} \cdot \left(\mathrm{e}^{rac{U_{\mathrm{D}}}{\mathbb{N} \cdot U_{\mathrm{T}}}}
ight)$$

 $(I_{\mathrm{DD}}$ – Diffusionsstrom nach Gl. 14; au_{T} – Transitzeit). Die Diffusionskapazität beschreibt die Änderung der Diffusionsladung mit der Diodenspannung $U_{\rm D}$:

$$C_{\rm D} = \frac{\mathrm{d}Q_{\rm D}}{\mathrm{d}U_{\rm D}} pprox \frac{\mathrm{Tt} \cdot I_{\rm D}}{\mathrm{N} \cdot U_{\rm T}}$$

Parameter	Parameter Bezeichnung		1N4001	
Tt	Transitzeit	11,5	5700	ns
N	Emissionskoeffizient	1,84	1,99	

Formen Sie selbst um

$$Q_{
m D} = exttt{Tt} \cdot I_{
m DD} ext{ mit } I_{
m DD} = I_{
m S} \cdot \left({
m e}^{rac{U_{
m D}}{{
m N} \cdot U_{
m T}}}
ight)$$

Wie groß ist die Diffusionskapazität in Abhängigkeit von der Durchlassspannung:

$$C_{\rm D} = \frac{d Q_{\rm D}}{d U_{\rm D}} = \dots$$

Wie groß ist die Durchlassspannung in Abhängigkeit vom Durchlassstrom I_{DD} :

$$U_{\rm D} = \dots \dots$$

Wie groß ist die Diffusionskapazität in Abhängigkeit vom Durchlassstrom:

$$C_{\rm D} = \dots \dots$$

Zur Kontrolle

$$Q_{
m D} = extsf{Tt} \cdot I_{
m DD} ext{ mit } I_{
m DD} = I_{
m S} \cdot \left({
m e}^{rac{U_{
m D}}{
m N} \cdot U_{
m T}}
ight)$$

Diffusionskapazität in Abhängigkeit von der Durchlassspannung:

$$C_{
m D} = rac{d\,Q_{
m D}}{d\,U_{
m D}} = rac{{
m Tt}}{{
m N}\cdot U_{
m T}} \cdot I_{
m S} \cdot \left({
m e}^{rac{U_{
m D}}{{
m N}\cdot U_{
m T}}}
ight)$$

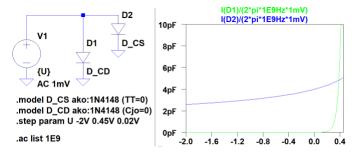
Durchlassspannung in Abhängigkeit vom Durchlassstrom I_{DD} :

$$U_{\mathrm{D}} = \mathbb{N} \cdot U_{\mathrm{T}} \cdot \ln \left(\frac{I_{\mathrm{DD}}}{I_{\mathrm{S}}} \right)$$

Diffusionskapazität in Abhängigkeit vom Durchlassstrom:

$$C_{\mathrm{D}} = rac{\mathtt{Tt}}{\mathtt{N} \cdot I_{\mathrm{TD}}} \cdot I_{\mathrm{DD}}$$

Simulierte Kapazitäten der Diode 1N4148



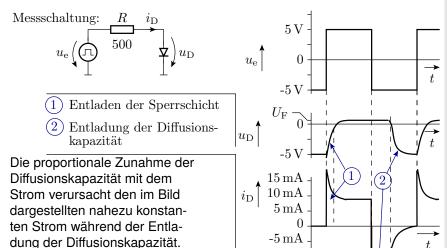
- Kapazität: AC-Strom/ $(2\pi \cdot AC$ -Spannung)
- Nur Sperrschichtkapazität: Simulation mit Transitzeit TT=0
- Nur Diffusionskapazität: Simulation mit Cio=0.

In späteren Überschlägen:

$$C \approx \begin{cases} \texttt{Cjo} & \texttt{Cjo} > \frac{\texttt{Tt}}{\texttt{N} \cdot U_{\mathrm{T}}} \cdot I_{\mathrm{DD}} \\ \frac{\texttt{Tt}}{\texttt{N} \cdot U_{\mathrm{T}}} \cdot I_{\mathrm{DD}} & \mathrm{sonst} \end{cases}$$

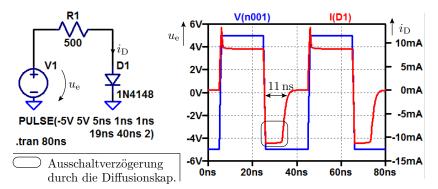
2. Dioden 4. Sperrschicht- und Diffusionskapazität

Schaltverhalten mit Diffusionskapazität



-10 mA -

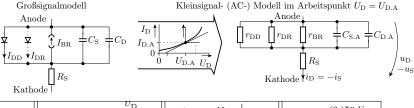
Kontrolle mittels Simulation



- Beim Einschalten Signalverlauf ähnlich wie geschaltetes RC-Glied.
- Beim Ausschalten benötigt die Diode zusätzlich TT=11 ns zum entladen der Diffusionskapazität (Stromschleife).

Kleinsignalmodell

Kleinsignalmodell, Ersatzwiderstände



D	$I_{ m DD}pprox { m Is}\cdot { m e}^{rac{U_{ m D}}{(2\cdot)^*\mathbb{N}\cdot U_{ m T}}}$	$\left \frac{1}{r_{\mathrm{DD}}} = \left. \frac{\mathrm{d}I_{\mathrm{DD}}}{\mathrm{d}U_{\mathrm{D}}} \right _{U_{\mathrm{D.A}}} \right $	$r_{ m DD} = rac{(2\cdot)^* N \cdot U_{ m T}}{I_{ m DD.A}}$
BR	$I_{ m BR} = exttt{Ibv} \cdot ext{e}^{rac{U_{ m S} - exttt{BV}}{U_{ m T}}}$	$\left \frac{1}{r_{\mathrm{BR}}} = \left \frac{\mathrm{d}I_{\mathrm{BR}}}{\mathrm{d}U_{\mathrm{S}}} \right _{U_{\mathrm{S.A}}} \right $	$r_{ m BR} = rac{U_{ m T}}{I_{ m BR.A}}$

D – Durchlassbereich; $(2\cdot)^*$ – Widerstandserhöhung im Hochstrombereich; BR – Durchbruchbereich; I_{DR} , r_{DR} – Rekombinationsstrom und zugehöriger Kleinsignalwiderstand (Berechnung analog zu r_{DD}); $C_{\mathrm{S.A}}$, $C_{\mathrm{D.A}}$ – Sperrschicht und Diffusionskapazität im Arbeitspunkt.

Formen Sie selbst um

Rekombinationsstrom in der Sperrschicht:

$$I_{
m DR} = {
m Isr} \cdot \left({
m e}^{rac{U_{
m D}}{
m Nr} \cdot U_{
m T}} - 1
ight)$$

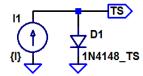
Kleinsignal- (AC-) Leitwertanteil:

$$\frac{1}{r_{\rm DR}} = \left. \frac{d I_{\rm DR}}{d U_{\rm D}} \right|_{U_{\rm D, \Delta}} = \dots$$

Kleinsignal- (AC-) Ersatzwiderstand:

$$r_{\rm DR} = \dots$$

Ersatzwiderstand der Diode 1N4148



- .model 1N4148_TS D(ls=2.68n + rs=.6 N=1.84 lsr=1.57f lkf=41m
- + Vj=0.5 BV=100 lbv=100µ

.tf V(TS) 11

+ Cjo=4p Vj=0.5 FC=0.5 TT=11.5n) .step param I -10mA 10mA 0.1mA



- Im Sperrbereich bei $I_D \approx 0$ ist der Ersatzwiderstand $\approx 17 \,\mathrm{M}\Omega$.
- Die Kapazität in Abhängigkeit von der Spannung über der Diode zeigt Folie 84.

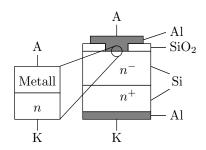
Spezielle Dioden

Schottky-Diode

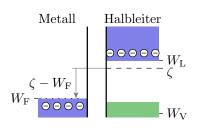
Schottky-Diode

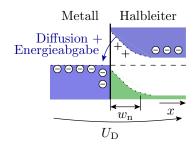
Eine Schottky-Diode ist ein Metall-Halbleiter-Übergang, z.B. Aluminium zu einem niedrig dotierten n-Gebiet.

- Dasselbe Grundmodell wie eine pn-Diode mit
- geringerer Flussspannungen,
- ohne Diffussionskapazität und damit kürzerer Ausschaltverzögerung.



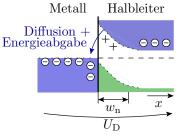
Physik an Metall-Halbleiter-Kontakten

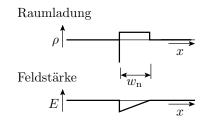




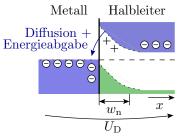
Bei Verbindung eines Metalls mit einer Fermi-Energie $W_{\rm F}$ mit einem n-dotierten Halbleiter mit einem chemischen Potential $\zeta>W_{\rm F}$

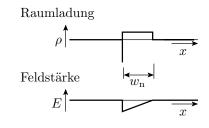
- verbiegt sich das Leitungsband des Halbleiters nach oben,
- die Leitungsbandelektronen diffundieren in das Metall und geben Energie ab.





- lacktriangle Die Elektronen aus dem Halbleiter sammeln sich an der Metalloberfläche und hinterlassen über eine Breite $w_{
 m n}$ ortsfeste Donatorionen im Halbleiter.
- Eine positive Spannung $U_{\rm D}$ drängt Elektronen in die Verarmungszohne. Die Potentialbarriere $\zeta-W_{\rm F}$ wird kleiner. Wie bei pn-Übergang exponentieller Stromanstieg mit der Spannung.
- Eine negative Spannung $U_{\rm D}$ erhöht die Potentialbarriere und die Sperrschichtbreite. Es fließt ein geringer Sperrstrom.





■ Bei zu hohen Sperrspannungen Durchbruch.

Im Vergleich zu pn-Übergängen:

- kleinere Flusspannungen.
- wesentlich kürzere Ausschaltzeiten³.

³Die Minoritätsladungsträger tragen nicht zum Ladungstransport bei. Die Majoritätsladungsträger folgen dem Feld sehr schnell.

Verhaltensmodell

Gleiches Spice-Grundmodell wie pn-Übergang:

Spice	Bezeichnung	1N4148	BAS40	BAT43
Is	Sättigungsstrom	2,68 nA	0*	481 μA
Rs	Bahnwiderstand	0,6 Ω	0,1 Ω	$40\mathrm{m}\Omega$
N	Emissionskoeffizient	1,84	1	5
Tt	Transitzeit	11,5 ns	0,025 ns	0
Cjo	Kapazität für $U_{ m D}$ =0	4	4	14 pF
М	Kapazitätskoeffizient	0,333	0,333	0,5

(1N4148 – Kleinsignaldiode; BAS40, BAT43 – Schottky-Dioden). Schottky-Dioden haben nur

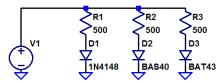
- etwa die halbe Flussspannung, simuliert durch kleinere Sättigungsströme und
- kurze Ausschaltzeiten, modelliert durch kleine Transitzeiten.
- (* Modellierung durch die Rekombinationsstromparameter Isr und Nr.)

Spice	Bezeichnung	1N4148	BAS40	BAT43
Vj	Diffusionsspannung	0,5 V	0,5 V	0,385 V
FC	Koeff. Bereichswechsel $C_{ m S}$	0,5	0,5	0,5
BV	Durchbruchspannung	100 V	40 V	∞
Ibv	Strom bei $U_{ m BR}$	100 μΑ	10 μΑ	10 ⁻¹⁰ A
Isr	RekombStromparam.	1,57 fA	254 fA	10^{-21} A
Nr	$I_{ m SR}$ -Emmisionskoeff.	2	2	4,995
Ikf	Wechsel Hochstr.	41 mA	10 mA	∞

Für die Dioden 1N4148 und BAS40 sind die Parameter aus [1] übernommen. Für die Dioden BAT43 wurde folgendes Modell aus dem Internet verwendet [http://www.ee.siue.edu/...]:

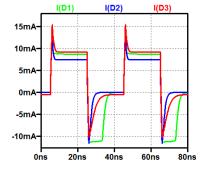
- .MODEL BAT43 D(IS=480.77E-6 N=4.9950 RS=40.150E-3
- + IKF=20.507 EG=.69 XTI=2 CJO=13.698E-12 M=.50005
- + VJ=.38464 ISR=10.010E-21 FC=0.5 NR=4.9950 TT=0)

Simulation des Schaltverhaltens



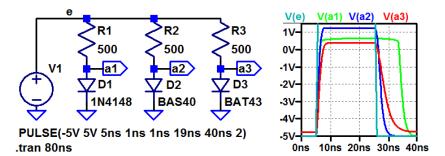
PULSE(-5V 5V 5ns 1ns 1ns 19ns 40ns 2)

- .model BAT43 D(IS=480.77E-6 N=4.9950 RS=40.150E-3
- + IKF=20.507 EG=.69 XTI=2 CJO=13.698E-12 M=.5 + VJ=.38464 ISR=10.010E-21 FC=0.5 NR=4.9950 TT=0)
- .model BAS40 D(IS=0 N=1 RS=0.1 TT=25p Cjo=4p
- + VJ=.5 M=.333 FC=0.5 Bv=40 lbv=10µ lsr=254f Nr=2
- + IKF=10m) .tran 80ns



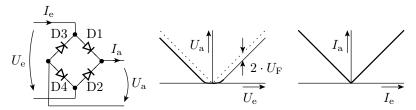
Schottky-Dioden haben nicht die charakteristische lange Ausschaltverzögerung von pn-Übergängen.

Spannungsverlauf über der geschalteten Diode



Die Simulationsergebnisse sind nicht vollständig plausibel. Die BAS40 hat eine Flussspannung größer 1 V (sollte nicht mehr als 0,5 V sein) und bei der BAT43 fließt laut Simulation ein Sperrstrom von 0,5 mA (sollte null sein). Nicht jedes Bauteilmodell, das man irgendwo findet, liefert glaubhafte Werte. Nachmessen!

Brückengleichrichter mit Schottky-Dioden



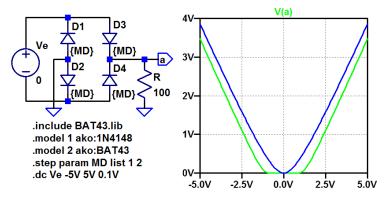
Mit dem vereinfachten Verhaltensmodell für Dioden aus Elektronik 1 und der Spannung als Ein- und Ausgabegröße:

 $(U_{\rm F}$ – Flussspannung). Mit Strom als Ein- und Ausgabe:

$$I_a = |I_e|$$

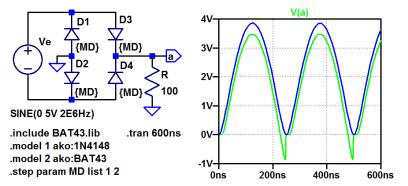
Exakte Betragsbildung, Einsatz als Messgleichrichter.

Simulation der Übertragungsfunktion



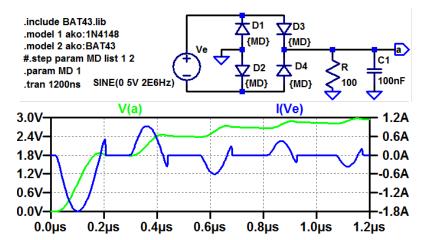
Über den Schottky-Dioden (BAT43) fällt weniger Spannung ab.

Zeitverhalten mit Schottky- und pn-Dioden



Bei hohen Frequenzen (hier 2 MHz) fließt durch die pn-Dioden nach jedem Polaritätswechsel aufgrund der Diffusionskapazität ein Strom in Sperrrichtung, bei Schottky-Dioden nicht.

Brückengleichrichter mit Glättungskondensator



Z-Dioden

Z-Dioden

Dioden mit niedrigen Durchbruchspannungen zum Betrieb im Durchbruchbereich.

$$\begin{array}{c|c} \text{Z-Diode} & & \text{linearisierte} \\ U_{\text{BR}} & & \text{Ersatzschaltung} \\ & & \text{im Arbeistpunkt} \end{array} \begin{array}{c} I_{\text{BR}} \\ r_{\text{BR}} \\ O \\ U_{\text{BR}} \left(I_{\text{BR}}\right) \end{array}$$

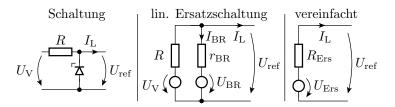
Durchbruchstrom und -spannung im Durchbruchbereich:

$$I_{
m BR} = exttt{Ibv} \cdot ext{e}^{rac{U_{
m BR} - ext{Rs} \cdot I_{
m BR} - exttt{BV}}{U_{
m T}}$$
 $U_{
m BR} = ext{BV} + ext{Rs} \cdot I_{
m BR} + U_{
m T} \cdot ext{ln} \left(rac{I_{
m BR}}{ ext{Tbv}}
ight)$

Kleinsignalersatzwiderstand:

$$r_{
m BR} = rac{U_{
m T}}{I_{
m BR}} + {
m Rs}$$

Spannungsstabilisierung mit einer Z-Diode



$$\begin{array}{lcl} U_{\mathrm{Ers}} & = & U_{\mathrm{BR}} + \frac{r_{\mathrm{BR}}}{R + r_{\mathrm{BR}}} \cdot (U_{\mathrm{V}} - U_{\mathrm{BR}}) \\ \\ r_{\mathrm{Ers}} & = & R \parallel r_{\mathrm{BR}} = R \parallel \left(\frac{U_{\mathrm{T}}}{I_{\mathrm{BR}}} + \mathrm{Rs}\right) \end{array}$$

- Hohe Konstanz der Ausgangsspannung verlangt kleinen $r_{\rm BR}$.
- Kleiner $r_{\rm BR}$ verlangt einen Durchbruchstrom $I_{\rm BR}\gg \frac{U_{\rm T}}{R_{\rm S}}$.

Rauschen der stabilisierten Spannung

Effektivwerte der Rauschquellen:

■ Wärmerauschen von Rs:

$$u_{\text{reff.Rs}} = \sqrt{2 \cdot k_{\text{B}} \cdot T \cdot \text{Rs} \cdot \Delta f}$$

Stromrauschen der Z-Diode:

$$i_{\text{reff.sd}} = \sqrt{2 \cdot q \cdot I_{\text{BR}} \cdot \Delta f}$$

 $\begin{array}{c}
\downarrow u_{\text{reff.R}} \\
\downarrow I_{\text{BR}} \\
\downarrow u_{\text{reff.Rs}} \\
\downarrow u_{\text{reff.As}}
\end{array}$ $\begin{array}{c}
\downarrow u_{\text{reff.Rs}} \\
\downarrow u_{\text{reff.As}}
\end{array}$ $\downarrow u_{\text{reff.As}} \\
\downarrow u_{\text{reff.As}}$

äquivalentes Spannungsrauschen dazu:

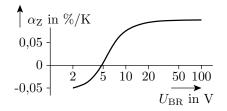
$$u_{\text{reff.sd}} = r_{\text{BR}} \cdot i_{\text{reff.sd}} = \frac{U_{\text{T}}}{I_{\text{BR}}} \cdot \sqrt{2 \cdot q \cdot I_{\text{BR}} \cdot \Delta f} = \frac{k_{\text{B}} \cdot T \cdot \sqrt{2 \cdot \Delta f}}{\sqrt{q \cdot I_{\text{BR}}}}$$

■ Äquivalente Rauschspannung am Ausgang für $R \gg r_{\rm BR}$:

$$\begin{split} u_{\text{reff.a}} &= u_{\text{reff.Rs}}^2 + (r_{\text{BR}} \cdot i_{\text{reff.sd}})^2 \\ &= \sqrt{2 \cdot k_{\text{B}} \cdot T \cdot \text{Rs} \cdot \Delta f + \frac{(k_{\text{B}} \cdot T)^2 \cdot 2 \cdot q \cdot \Delta f}{q \cdot I_{\text{BR}}}} \end{split}$$

Auch gegen Rauschen hilft ausreichender Durchbruchstrom $I_{\rm BR}$.

Durchbruchspannung abhängig von Temperatur



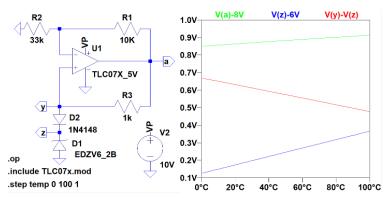
$$U_{\rm BR} = U_{\rm BR} \left(T_0 \right) \cdot \left(1 + \alpha_{\rm Z} \cdot \left(T - T_0 \right) \right)$$

 $U_{\rm BR}$ – Durchbruchspannung; T_0 – Bezugstemperatur; $\alpha_{\rm Z}$ – Temperaturkoeffizient, für $U_{\rm BR} < 5\,{\rm V}$ negativ, sonst positiv. Die Flussspannung von pn-Übergängen hat einen negativen betragsmäßig viel größeren Temperaturkoeffizient:

$$\frac{\mathrm{d}U_\mathrm{D}}{\mathrm{d}T}\bigg|_{I_\mathrm{D}=\,\mathrm{const.}} \approx -1.7\,\mathrm{mV/K}$$

$$\alpha_\mathrm{Z} = \frac{\mathrm{d}U_\mathrm{D}}{U_\mathrm{D}\cdot\mathrm{d}T} \approx -0.25\%/\mathrm{K}$$

Minderung der Temperaturabhängigkeit



Der OV hält den Strom durch D1 und D2 konstant und bildet

$$U_{\rm a} = (U_{\rm BR.D1} + U_{\rm F.D2}) \cdot \left(1 + \frac{R_1}{R_2}\right)$$

 $U_{\mathrm{BR}\ \mathrm{D1}}$ nimmt mit der Temperatur T zu und $U_{\mathrm{F}\ \mathrm{D2}}$ mit T ab.

PIN-Diode

PIN-Diode (Schichtfolge: p - intrinsisch - n)

Eine PIN-Diode hat eine undotierte Schicht zwischen dem p- und dem n-Gebiet. Diese erhöht die Transitzeit. Für Frequenzen $f \gg Tt^{-1}$ verhält sich ein PIN-Diode wie ein gesteuerter Widerstand mit:

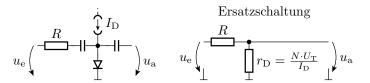
$$r_{\mathrm{D.Pin}} pprox \frac{\mathbb{N} \cdot U_{\mathrm{T}}}{I_{\mathrm{D}}}$$

 $(\bar{I}_{\rm D}$ – Gleichstrom durch die Diode). Große Sperrschichtbreite bedeutet, geringe Sperrschichtkapazität.

Beispielmodell:

⁴http://w.rohem.com/web/in/products/-/product/RN142S

Spannungsteiler für Wechselspannungen

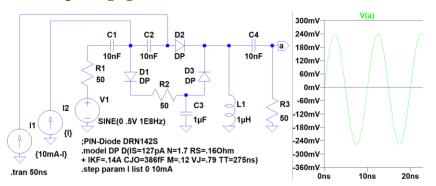


 $lue{}$ Für hohe Frequenzen hat die PIN-Diode einen einstellbaren Widerstand. Mit $I_{\rm D}$ einstellbares Spannungsteilerverhältnis:

$$u_{\mathbf{a}} = \frac{\mathbf{N} \cdot U_{\mathbf{T}}}{\mathbf{N} \cdot U_{\mathbf{T}} + I_{\mathbf{D}} \cdot R} \cdot u_{\mathbf{e}}$$

lacktriangle Weniger diodentypische Verzerrung für größer $u_{
m e}$ -Amplituden als bei Dioden mit kurzer Transitzeit.

π -Dämpfungsglied mit 3 PIN-Dioden



- Bei $I_2 = 10 \,\mathrm{mA}$ und $I_1 = 0$ haben D1 und D3 $r_{\rm D} pprox rac{1.7 \cdot 26 \, {\rm mV}}{10 \, {\rm m}^{\, \Lambda}} = 4.4 \, \Omega$ und D2 sperrt. Keine Signalweiterleitung.
- Bei $I_2=0$ und $I_1=10\,\mathrm{mA}$ umgekehrt. Signal wird weitergeleitet.

Kapazitätsdiode

Kapazitätsdiode

Ausnutzung der Sperrschichtkapazität:

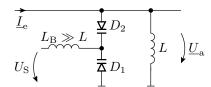
$$C_{\mathrm{S}} = \mathtt{Cjo} \cdot rac{1}{\left(1 + rac{U_{\mathrm{S}}}{\mathtt{Vj}}
ight)^{\mathtt{M}}} \; \mathrm{für} \; U_{\mathrm{S}} \geq 0$$

Kapazitätsdioden haben

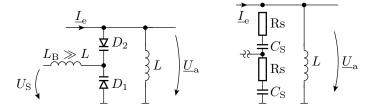
- hyperabrupte Dotierung ($M \approx 0,3...0,5$)
- geringe Bahnwiderstände

Anwendung: Frequenzabstimmung von LC-Bandpässen und

-Oszillatoren.



4. Kapazitätsdiode



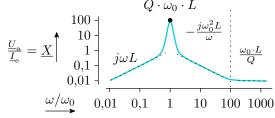
$$\begin{split} \frac{\underline{U}_{\rm a}}{\underline{I}_{\rm e}} &= \underline{X} &= 2 \cdot \left(\mathrm{Rs} + \frac{1}{j\omega C_{\rm s}} \right) \parallel j\omega L \\ &= \frac{j\omega L - \omega^2 \cdot \mathrm{Rs} \cdot LC_{\rm s}}{1 + j\omega \cdot \mathrm{Rs} \cdot C_{\rm s} - \omega^2 \frac{LC_{\rm s}}{2}} \\ \mathrm{mit} \; \omega_0 &= \sqrt{\frac{2}{LC_{\rm s}}} \; \mathrm{und} \; Q = \frac{1}{\mathrm{Rs}} \cdot \sqrt{\frac{L}{2 \cdot C_{\rm s}}} : \\ &\underline{X} = \frac{j\omega L \cdot \left(1 + j \cdot \frac{\omega}{Q \cdot \omega_0} \right)}{1 + j \cdot \frac{\omega}{Q \cdot \omega_0} - \left(\frac{\omega}{\omega_0} \right)^2} \end{split}$$

Abschätzung des Frequenzgangs für $Q\gg 1$ d.h. $R_{\rm B}\ll \sqrt{\frac{L}{2\cdot C_{\rm s}}}$:

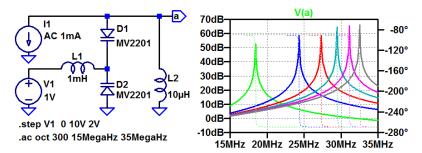
	$\frac{\omega}{\omega_0} \ll 1$	$\left(\frac{\omega}{\omega_0} = 1\right) \land (Q \gg 1)$	$\left(\frac{\omega}{\omega_0}\gg 1\right)\wedge\left(\frac{\omega}{Q\cdot\omega_0}\gg 1\right)$	$\frac{\omega}{\omega_0} \gg Q$
$\frac{\underline{U}_{\mathbf{a}}}{\underline{I}_{e}}$	$j\omega L$	$\omega_0 L \cdot Q$	$-\frac{j\omega_0^2L}{\omega}$	$\frac{\omega_0 \cdot L}{Q}$

Resonanzfrequenz $\omega_0 = f(U_S)$:

$$\begin{array}{lcl} \omega_0 & = & \sqrt{\frac{2}{LC_{\mathrm{S}}}} \; \mathrm{mit} \; C_{\mathrm{S}} = \mathrm{Cjo} \cdot \frac{1}{\left(1 + \frac{U_{\mathrm{S}}}{\mathrm{Vj}}\right)^{\mathrm{M}}} \\ \\ \omega_0 & = & \sqrt{\frac{2}{L \cdot \mathrm{Cjo}}} \cdot \left(1 + \frac{U_{\mathrm{S}}}{\mathrm{Vj}}\right)^{\frac{\mathrm{M}}{2}} \end{array}$$



Beispielsimulation



Resonanzfrequenz in Abhängigkeit von der Steuerspannung:

V1 in V	0	2	4	6	8	10
f_0 in MHz	18,43	24,31	27,35	29,46	31,14	32,53

Literatur

[1] U. Tietze, Ch. Schenk, and L. Dümbgen. Halbleiterschaltungstechnik. Springer, 2002.