

Elektronik II Foliensatz 3: Simulation mit zeitveränderlichen Größen

G. Kemnitz

Institut für Informatik, TU Clausthal (E2 F3) 23. Mai 2023

Inhalt F3: Zeitveränderliche Größen

Simulationsarten Zeitdiskrete Sim.

- 2.1 Geschaltete RC-Glieder
- 2.2 Gatterschaltzeiten
- 2.3 Kippstufen
- 2.4 Sinussignale
- 2.5 Testsignale

Frequenzbereich

- 3.1 Frequenzgang
- 3.2 Laplace-Transformierte

- 3.3 Verstärker
- 3.4 Filter

Spektralanalyse

- 4.1 Fouriertransformation
- 4.2 Klirrfaktor

Rauschen

- 5.1 Wärmerauschen
- 5.2 Rauschquellen
- 5.3 Stromrauschen
- 5.4 Bipolartransistoren

Simulationsarten

1. Simulationsarten

Simulation mit zeitveränderlichen Größen

Bei der Berücksichtigung zeitveränderlicher Spannungen und Ströme sind zusätzlich kapazitive Umladeströme und induzierte Spannungen zu berücksichtigen:

$$\begin{array}{c|c}
u_{\rm C} & i_{\rm C} = C \cdot \frac{d u_{\rm C}}{dt} \\
C & & \\
\end{array}$$

$$\begin{array}{c|c}
u_{\rm L} = L \cdot \frac{d v_{\rm L}}{dt} \\
\vdots \\
i_{\rm L}
\end{array}$$

Aus den Maschen- und Knotengleichungen werden große Differenzialgleichungen. Es gibt zwei Simulationsarten für diese DGL-Systeme:

- zeitdiskret (Analyseart »trans«, TRANSition) und
- Frequenzbereich (Analyseart »ac«, Alternate Current).

Die zeitdiskrete Simulation ist auch für nichtlineare, die Simulation im Frequenzbereich nur für lineare Schaltungen geeignet.

1. Simulationsarten

Die Brücke zwischen beiden Simulationsarten bildet die Fourier-Transformation (Analyseart »four«). Sie berechnet die Spektren gemessener oder berechneter Signalverläufe. Die Ergebnisse müssen in Amplitude und Phase mit denen der »ac«-Simulation übereinstimmen.

Veränderungen des Spektrums durch nichtlineare Verzerrungen werden durch den Klirrfaktor beschrieben. Der Klirrfaktor lässt sich auch in der Analyseart »four« berechnen.

Elektronische Bauteile (Widerstände, pn-Übergänge) rauschen. Das Rauschen ist ein Störsignal, das dem Nutzsignal überlagert ist. Die Auswertbarkeit eines Signals verlangt einen hinreichend großen Signal-Rausch-Abstand (SNR). Rauschgrößen werden in der Analyseart »noise« berechnet.

Zeitdiskrete Sim.

2. Zeitdiskrete Sim.

Zeitdiskrete Simulation

C und L werden durch zeitveränderliche Quellen nachgebildet:

	Original	Ersatz
Kapazität	$= \int_{-\infty}^{\infty} i_{\mathrm{C}} u_{\mathrm{C}}$	
Induktivität	$\begin{cases} i_{\rm L} \\ \downarrow u_{\rm L} \end{cases}$	$u_{\rm L}$ $\left(\begin{array}{c} \\ \\ \\ \end{array} \right) i_{\rm L}(n+1) = i_{\rm L}(n) + \frac{\Delta t}{L} \cdot u_{\rm L}(n)$

Berechnung von i und u in diskreten Zeitschritten:

Wiederhole für jeden Zeitschritt: stationäre Schaltungsanalyse Berechnen der Quellwerte für den Folgeschritt

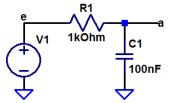
Auch für nichtlineare Schaltungen geeignet.

Geschaltete RC-Glieder

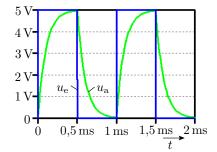
Geschaltete RC-Glieder

Geschaltete BC- und BL-Glieder dienten in Elektronik Lzur Abschätzung des Zeitverhaltens geschalteter Systeme (Digitalschaltungen, Pulsweitenmodulation, ...).

Bei einem geschalteten RC-Glied streben Strom und Spannung mit der Zeitkonstanten $\tau=RC$ und beim geschalteten RL-Glied mit der Zeitkonstanten $\tau = \frac{L}{B}$ gegen ihren stationären Wert.

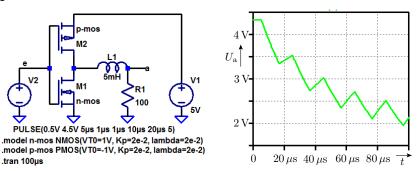


PULSE(0 5V 0 1µs 1µs 0.5ms 1ms 2) .tran 2ms



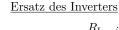
Zurückführung auf geschaltete RC- oder RL-Glieder

Schaltungen mit einer geschalteten Quelle und nur einer wesentlichen Kapazität oder Induktivität lassen sich auf das Modell eines geschalteten RC- bzw. RL-Glieds zurückführen.



Frage: Wie sieht das funktionsgleiche geschaltete RL-Glied aus?

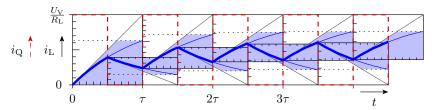
Elektronik 1, Foliensatz F6, Folie 48:



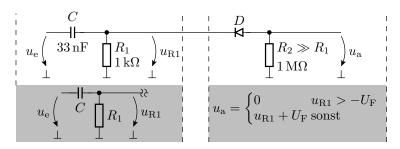
$$u_{\mathbf{a}} = \left\{ \begin{matrix} U_{\mathbf{V}} & x = 0 \\ 0 & x = 1 \end{matrix} \right. \left. \begin{matrix} R_{\mathbf{L}} & i_{\mathbf{L}} \\ L \end{matrix} \right\}$$

funktionsgleiches RL-Glied

$$i_{\mathbf{Q}} = \left\{ \begin{matrix} \frac{U_{\mathbf{V}}}{R_{\mathbf{L}}} & x = 0 \\ 0 & x = 1 \end{matrix} \right\} \begin{array}{c} i_{\mathbf{L}} \\ R_{\mathbf{L}} \\ I \end{array} \right\}$$



Bereichsweise Annäherung durch eine RC-Glied

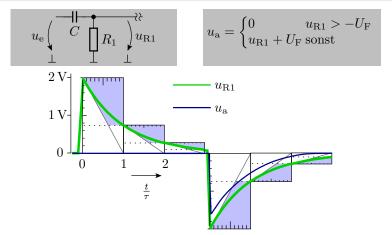


Konstruktion der Ersatzschaltung für Überschläge:

- Wegen $R_2\gg R_1$ kann die Diode näherungsweise als Unterbrechung betrachtet werden. Übrig bleibt ein RC-Glied mit $\tau=R_1\cdot C=33~\mu\mathrm{s}.$
- Für negative $u_{\rm R1} < -U_{\rm F}$ ist die Ausgangsspannung $u_{\rm R1} U_{\rm F}$ und sonst null.

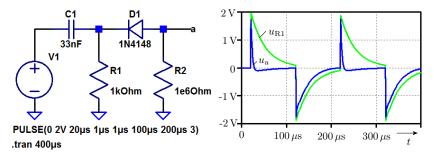
2. Zeitdiskrete Sim.

1. Geschaltete RC-Glieder



 $u_{\rm R1}$ hat nach dem Sprung als Anfangswert die Sprunghöhe (beim Ausschalten von $u_{\rm e}$ negativ) und strebt gegen null. Die Ausgangsspannung müsste bei positiven Eingangssprüngen null bleiben und bei negativen müsste ein Nadelimpuls erscheinen.

Simulation



Abweichend vom geschätzten Ausgabesignalverlauf gibt es auch bei der steigenden Flanke am Ausgang einen Nadelimpuls mit der Zeitkonstanten $\tau_2 \approx 4\,\mu \text{s}$. Das Simulationsmodell der Diode hat offenbar im Sperrbereich eine Kapazität von:

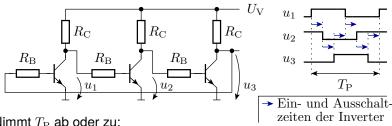
$$C_{\rm D} \approx \frac{\tau_2}{R_{\rm o}} = 4\,{\rm pF}$$

Überschläge vernachlässigen immer viele Details.

Gatterschaltzeiten

Ringinverter

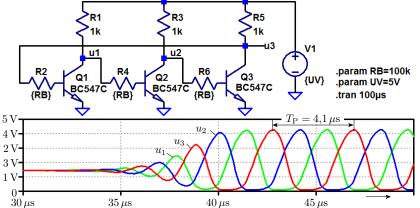
Die drei einfachen Transistorinverter sind zu einem Ringinverter verschaltet. Die Periode des Ausgangssignals ist die Summe der drei Ein- und Ausschaltzeiten¹.



Nimmt $T_{\rm P}$ ab oder zu:

- wenn $R_{\rm B} \downarrow \Rightarrow$ mehr Übersteuerung, $T_{\rm P} \uparrow$?
- wenn $U_{\rm V} \downarrow \Rightarrow$ weniger Übersteuerung, $T_{\rm P} \downarrow$?

¹Der Ringinverter diente in Elektronik I, F8, Abschn 3.2 zur Illustration der Zusatzverzögerung durch Übersteuerung.



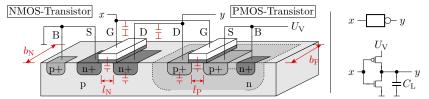
Die Simulation zeigt das Gegenteil des erwarteten Verhaltens²:

- Verringerung $R_{\rm B} \to 33\,{\rm k}\Omega$: Verringerung von $T_{\rm P} \to 2\,\mu{\rm s}$
- Verringerung $U_{\rm V} \rightarrow 2.5\,{\rm V}$: Vergrößerung von $T_{\rm P} \rightarrow 4.5\,\mu{\rm s}$
- Schottky-Diode zwischen Basis und Kollektor: $T_{\rm P} \rightarrow 11.5 \,\mu{\rm s}$

²Die Transistoren übersteuern nicht? Modell ist unvollständig? ...

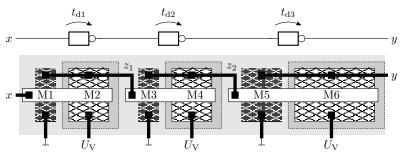
Verzögerung eines CMOS-Inverters

Bei einem CMOS-Inverter wird die Lastkapazität $C_{\rm L}$ beim Ausschalten über den NMOS-Transistor entladen und beim Einschalten über den PMOS-Transistor aufgeladen. Die Lastkapazität setzt sich zusammen aus den Kapazitäten der pn-Übergänge am Inverterausgang (Source-Bulk, Drain-Bulk) und den Gate-Kapazitäten an den Eingängen der Folgegatter.

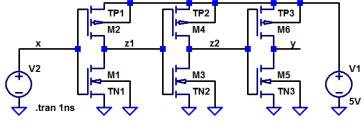


Die Umladezeiten verhalten sich proportional zur Lastkapazität und umgekehrt proportional zu den Umladeströmen.

Die Umladeströme verhalten sich proportional zum Verhältnis aus Kanalbreite und Kanallänge: $w_{\rm N/P}=b_{\rm N/P}/l_{\rm N/P}$. Die Ein- und Ausschaltzeit wird folglich erheblich von der Geometrie abhängen. In der nachfolgenden Inverterkette haben die NMOS-Transistoren M_1 und M_3 die relative Breite 1,5 und M_5 drei. Die PMOS-Transistoren sind wegen der nur halb so großen Ladungsträgerbeweglichkeit doppelt so breit gewählt.



Wie wirkt sich das auf die Schaltverzögerungen aus?

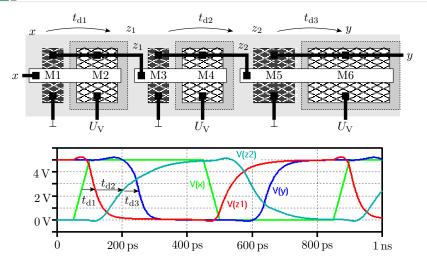


PULSE(0 5V 50p 50p 50p 350p 800p 2)

- .model myNMOS NMOS(VT0=0.73V Kp=69μ lambda=33m tox=25n CJ=360μ CJSW=250p)
- .model myPMOS PMOS(VT0=-0.75V, Kp=23µ, lambda=55m tox=25n CJ=340µ CJSW=220p)
- .model TN1 ako:myNMOS $I=1\mu$ w=1 μ ad=1.5p as=1.5p pd=5 μ ps=5 μ
- .model TN2 ako:myNMOS I=1μ w=1μ ad=1.5p as=1.5p pd=5μ ps=5μ
- .model TP2 ako:myPMOS I=1μ w=2μ ad=3p as=3p pd=7μ ps=7μ
- .model TN3 ako:myNMOS I=1µ w=2µ ad=3p as=3p pd=7µ ps=7µ
- .model TP3 ako:myPMOS I=1µ w=4µ ad=6p as=6p pd=11µ ps=11µ
- Parameter: I Kanallänge; w Kanalbreite; ad bzw. as Fläche des Drain- bzw. Source-Gebiets; pd bzw. ps Umfang des Drain- bzw. Source-Gebiets; Angaben in Metern bzw. Quadratmetern).

2. Zeitdiskrete Sim.

2. Gatterschaltzeiten

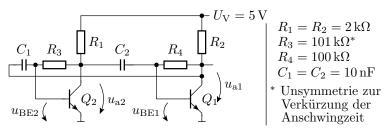


Die Verzögerung $t_{\rm d1}$ des ersten Inverters ist deutlich kürzer als $t_{\rm d2}$ des zweiten Inverters mit der doppelten Last und $t_{\rm d3}$ ist wieder kürzer, da ohne Last.

Kippstufen

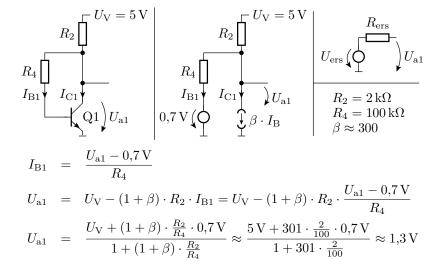
Astabiler Multivibrator

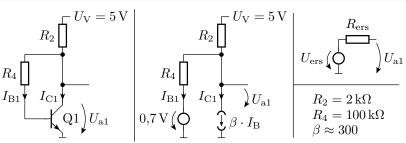
Alter Schaltungsklassiker:



Ohne C_1 und C_2 arbeiten beide Transistoren im Normalbereich. Ausgangsspannung $\approx 1{,}31\,\mathrm{V}$ (siehe nächste Folie). Eine fallende Flanke am Kondensatoreingang schaltet den nachfolgenden Transistor bis zum Umladen des Kondensators aus und eine steigende schaltet ihn voll ein.

Ersatzschaltung ohne Kapazitäten





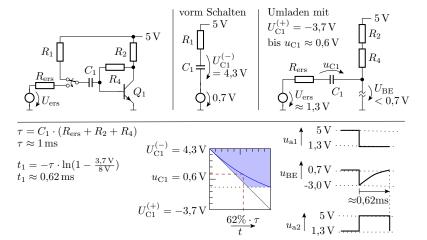
 \blacksquare U_{ers} ist U_{a1} , wenn kein Ausgangsstrom fließt, d.h. der berechnete Wert:

$$U_{\rm ers} = U_{\rm a1} \approx 1.3 \, {\rm V}$$

■ Der Ersatzwiderstand der Ersatzschaltung ohne Quellen:

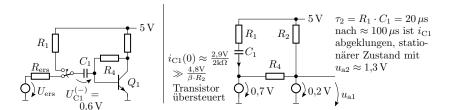
$$R_{\mathrm{ers}} = R_2 \parallel \frac{R_4}{1+\beta} \approx 286 \,\Omega$$

Rechte Stufe als geschaltetes RC-Glied



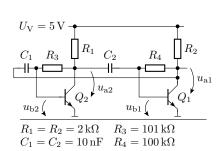
Wenn Transistor Q_2 einschaltet, schaltet Q_1 für eine Zeit t_1 aus.

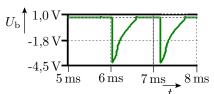
Umladen von C_1 beim Zurückschalten

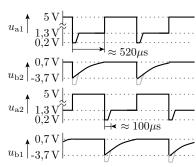


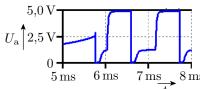
- Beim Zurückschalten liefert C_1 viel mehr Basisstrom als R_4 im stationären Zustand. Transistor übersteuert: $u_a \approx 0.2 \, \mathrm{V}$.
- Umladung von C_2 über R_1 nach etwa 100 μ s abgeschlossen. Stationärer Zustand $u_a \approx 1.3 \, \mathrm{V}$.

Funktion der Gesamtschaltung



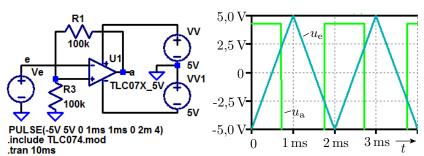




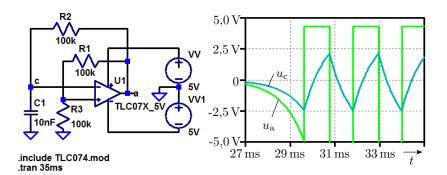


Schwellwertschalter mit Hysterese

In Elektronik I, F6, Abschn. 1.6 wurde ein RC-Oszillator mit einem Schwellwertschalter mit Hysterese konstruiert.

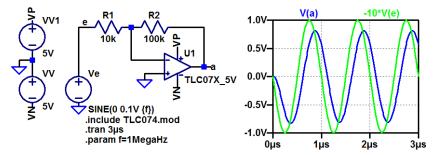


Erweiterung zum Rechtecksignalgenerator

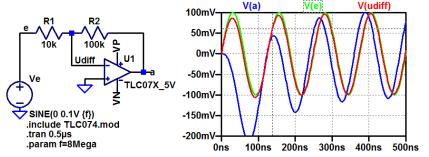


Sinussignale

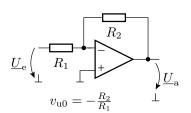
Sinussignale

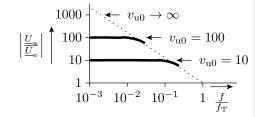


Invertierender Verstärker mit Verstärkung $-R_2/R_1=-10$ für niedrige Frequenzen. Im Bild bei 1 MHz ist die Verstärkung nur noch $-8{,}15$ und das Ausgangssignal gegenüber dem Eingabesignal um 120 ns verzögert. Bei einer Verringerung der Signalperiode auf die doppelte Verzögerung $T_{\rm P}\approx 240\,{\rm ns}$ müsste aus der Rückkopplung eine Mittkopplung werden?



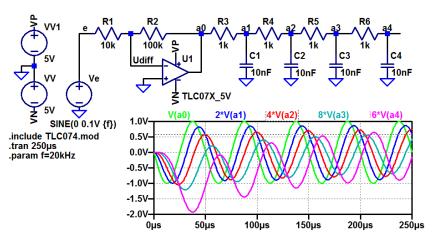
Bei 8 MHz sind Ein- und Ausgabesignal fast gleichphasig. Es kommt zu einer Mittkopplung. Die Verstärkung (Amplitude der Ausgangsspannung zur Amplitude der Differenzspannung) ist jedoch nur noch etwa eins. Wenn man R_2 weglässt, ändert sich die Ausgangsspannung kaum.





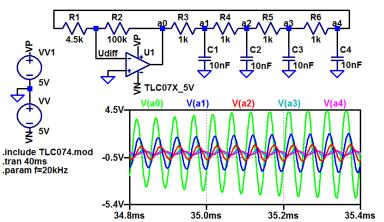
Die 8 MHz sind offenbar etwa die Transitfrequenz $f_{\rm T}$ des Operationsverstärkers, bei der die Verstärkung eins ist. Eine Verstärkung $v_{\rm u0}>1$ ist nur für die Spektralanteile mit $f<\frac{f_{\rm T}}{v_{\rm u0}}$ erreichbar. Rückgekoppelte Verstärker, bei denen die Verstärkung bei einer Phasenverschiebung von 180° größer eins ist, wandeln sich in mitgekoppelte Verstärker um und schwingen.

Verstärker mit RC-Phasenschieber am Ausgang

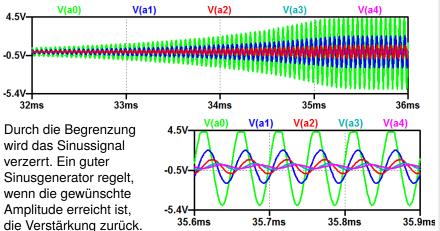


Jedes RC-Glied halbiert etwa das Ausgangssignal und verzögert es um $\approx 45^{\circ}$.

Bei Rückführung des Ausgangssignals a_4 auf den Verstärkereingang und einer Erhöhung der Verstärkung auf $>\!16$ sollte die Schaltung schwingen. Bei Rückkopplung von a_4 auf den Eingang wird $U_{\rm a4}$ durch R_1 noch etwas mehr gedämpft. Erforderliche Verstärkung $R_2/R_1\approx 22$.



Genau genommen entsteht ein aufschwingendes Signal (Verstärkung mal Dämpfung >1), das ab einer bestimmten Amplitude durch die Versorgungsspannung begrenzt wird.

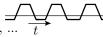


Testsignale

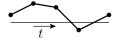
Programmierung der Signalquellen

Außer Rechteck und Sinus können die Spannungs- und Stromquellen des Simulators weitere Signalformen bereitstellen.

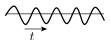
• periodische Pulse mit einstellbarer ______ Einschalt-, Ausschalt-, Anstiegszeit, ...



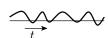
 stückenweise lineare Verläufe mit Wert-Zeit-Punkten als Parameter



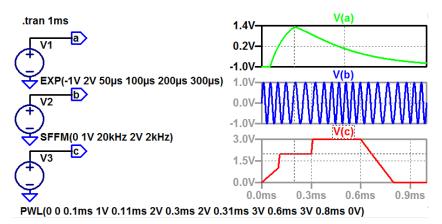
• Sinus mit einstellbarer Frequenz, Phasenverschiebung, Gleichanteil



• Sinus mit zeitlich veränderlicher Frequenz, ... (frequenzmoduliert)



• Exponential funktion



Frequenzbereich

3. Frequenzbereich

Frequenzbereich

Im Frequenzbereich wird ein periodisches Zeitsignal durch eine Summe frequenzabhängiger komplexer Exponentialfunktionen dargestellt:

$$x(t) = \sum_{m = -\infty}^{\infty} \underline{X}_m \cdot e^{j \cdot m \cdot \omega_0 \cdot t}$$

Nach dem Überlagerungssatz ist bei einem linearen System die Systemantwort einer Summe von Eingabesignalen gleich der Summe der Systemantworten der Summanden und kann somit für jedes $\omega = m \cdot \omega_0$ einzeln berechnet werden.

Für jeden Summanden $U \cdot e^{j \cdot \omega \cdot t}$ bzw. $I \cdot e^{j \cdot \omega \cdot t}$ verhalten sich die komplexen Spannungen U und Ströme I auch an Kapazitäten und Induktivitäten zueinander proportional:

$$\frac{\underline{U}_{\mathrm{R}}}{\underline{I}_{\mathrm{R}}} = R \quad \frac{\underline{U}_{\mathrm{L}}}{\underline{I}_{\mathrm{L}}} = \underline{X}_{\mathrm{L}} = j\omega L; \quad \frac{\underline{U}_{\mathrm{C}}}{\underline{I}_{\mathrm{C}}} = \underline{X}_{\mathrm{C}} = \frac{1}{j\omega C}$$

3. Frequenzbereich

Die Schaltungsanalyse im Frequenzbereich berechnet die frequenzabhängigen Amplituden und Phasen der komplexen Ströme und Spannungen als Funktion von der Frequenz.

Eine zeitdiskrete Simulation mit Kosinuseingabe berechnet Amplitude und Phase nur für eine Frequenz.

Gibt es imaginäre Ströme und Spannungen?

- In der Rechnung ja,
- in der Wirklichkeit nicht.

Ist das Widerspruch?

 Nein, ein physikalisch darstellbares Signal enthält zu jedem Spektralanteil den konjugiert komplexen Spektralanteil mit der negierten Frequenz. Gerechnet wird aber nur mit dem der positiven Frequenz.

Frequenzgang

Frequenzgang

Ein Frequenzgang ist das Verhältnis einer komplexen Ausgabe- zu einer komplexen Eingabegröße in Abhängigkeit von der (Kreis-) Frequenz ω eines linearen zeitinvarianten³ Systems.

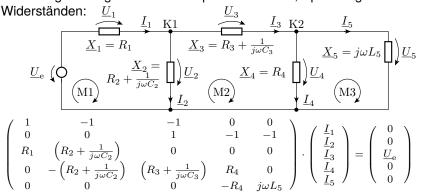
Amplitudenfrequenzgang: Verhältnis der Ausgangs- zur Eingangsamplitude in Abhängigkeit von der Frequenz.

Phasenfrequenzgang: Phasenverschiebung (gleich Produkt aus Verzögerung und Frequenz) in Abhängigkeit von der Frequenz.

 $^{^3}$ Zeitinvariant bedeutet, das sich das Systemverhalten nicht mit der Zeit ändert, d.h. dasselbe Eingabesignal zu einem anderen Zeitpunkt führt zeitversetzt zum selben Ausgabesignal.

Schaltungsanalyse im Frequenzbereich

Die Berechnung des Frequenzgangs erfolgt über Knoten- und Maschengleichungen mit den komplexen Strömen, Spannungen und



Die Auflösung des Gleichungssystems nach dem Verhältnis $\frac{U}{\overline{I}}$ ist der Quotiont aus einem Zähler- und einem Nennerpolynom mit $j\omega$ als Argument:

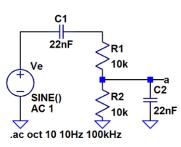
$$\underline{X} = \underline{\underline{U}} = \frac{a_0 + a_1 \cdot j\omega + \ldots + a_Z \cdot (j\omega)^Z}{b_0 + b_1 \cdot j\omega + \ldots + b_N \cdot (j\omega)^N}$$

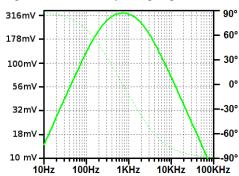
 $(Z-{\sf Grad}\ {\sf des}\ {\sf Z\"{a}hlerpolynoms};\ N-{\sf Grad}\ {\sf des}\ {\sf Nennerpolynoms}).$

$$\begin{split} \underline{U_{\rm e}} & \qquad \qquad \underline{U_{\rm e}} & \qquad \qquad \underline{U_{\rm a}} \\ & \qquad \qquad = \qquad \frac{R \parallel \frac{1}{j\omega C}}{R + \frac{1}{j\omega C} + \left(R \parallel \frac{1}{j\omega C}\right)} = \frac{\frac{R}{1 + j\omega RC}}{R + \frac{1}{j\omega C} + \frac{R}{1 + j\omega RC}} \\ & \qquad \qquad = \qquad \frac{j\omega RC}{1 + 3 \cdot j\omega RC - (\omega RC)^2} \end{split}$$

Bode-Diagramm

Doppellogarithmische Darstellung des Amplitudenfrequenzgangs und einfachlogarithmische Darstellung des Phasenfreguenzgangs.





$$\underline{U}_a = \frac{j\omega RC \cdot 1 \,\mathrm{V}}{1 + 3 \cdot j\omega RC - (\omega RC)^2}$$

mit
$$R \cdot C = 22 \,\mathrm{nF} \cdot 10 \,\mathrm{k}\Omega = 220 \,\mu\mathrm{s}$$

Dezibel

Dezibel ist eine logarithmische Angabe für Amplitudenverhältnisse:

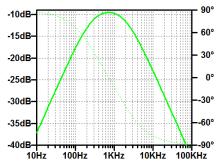
$$d = 20 \cdot \log_{10}(w); \quad w = 10^{\frac{d}{20}}$$

Wertangabe (w)	0,01	0,1	1	10	100
Dezibelangabe (d)	-40 dB	-20 dB	0 dB	20 dB	40 dB

Frequenzgangabschätzung

$$\begin{array}{lcl} \underline{U}_{a} & = & \frac{j\omega RC \cdot 1\,\mathrm{V}}{1 + 3 \cdot j\omega RC - \left(\omega RC\right)^{2}} \quad \mathrm{mit} \quad R \cdot C = 22\,\mathrm{nF} \cdot 10\,\mathrm{k}\Omega = 220\,\mu\mathrm{s} \\ \\ & = & 1\,\mathrm{V} \cdot \frac{\frac{j \cdot f}{723\,\mathrm{Hz}}}{1 + \frac{j \cdot 3 \cdot f}{723\,\mathrm{Hz}} - \left(\frac{f}{723\,\mathrm{Hz}}\right)^{2}} \end{array}$$

Bereich	Näherung $rac{U_a}{1 ext{V}}$
$f\ll723\mathrm{Hz}$	$\frac{\frac{j \cdot f}{723 \mathrm{Hz}}}{1}$
$f \approx 723\mathrm{Hz}$	$\frac{\frac{j \cdot f}{723 \text{Hz}}}{\frac{j \cdot 3 \cdot f}{723 \text{Hz}}} = \frac{1}{3}$
$f \gg 723\mathrm{Hz}$	$\frac{\frac{j \cdot f}{723 \text{ Hz}}}{-\left(\frac{f}{723 \text{ Hz}}\right)^2} = \frac{-j \cdot 723 \text{ Hz}}{f}$



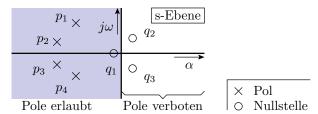
Laplace-Transformierte

Laplace-Transformierte, Pol-Nullstellen-Diagramm

Ersatz des Frequenzparameters $j\omega$ durch einen komplexen Frequenzparameter $s=\alpha+j\omega$. Laplace-Transformierte sind Quotienten zweier Polynome bezüglich s:

$$\underline{X} = \frac{a_0 + a_1 \cdot s + \ldots + a_Z \cdot s^Z}{b_0 + b_1 \cdot s + \ldots + b_N \cdot s^N} = \frac{a_0}{b_0} \cdot \frac{\left(1 - \frac{s}{q_1}\right) \cdot \ldots \cdot \left(1 - \frac{s}{q_Z}\right)}{\left(1 - \frac{s}{p_1}\right) \cdot \ldots \cdot \left(1 - \frac{s}{p_N}\right)}$$

Bis auf einen Skalierungsfaktor eindeutig durch ihre Pole p_i und Nullstellen q_i beschreibbar.

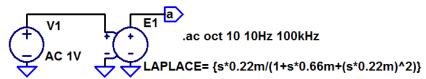


Aus den Abständen und Winkeln der Pole und Nullstellen zu einer Frequenz auf der Frequenzachse lassen sich Betrag und Phase abschätzen.

Konjugiert komplexe Pole in der rechten Halbebene zeigen Einschwingvorgänge und in der linken Halbebene abschwingende Vorgänge. Systeme mit Einschwingvorgängen sind instabil (schwingen von selbst). Signalverarbeitende Systeme dürfen nur Pole auf der linken Halbebene haben.

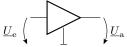
Der Frequenzgang gesteuerter Quellen kann direkt als Laplace-Transformierte einprogrammiert werden:

$$\underline{U}_a = \frac{j\omega \cdot 0,22\,\mathrm{ms} \cdot 1\,\mathrm{V}}{1 + j\omega \cdot 0,66\,\mathrm{ms} + \left(j\omega \cdot 0,22\,\mathrm{ms}\right)^2} \Rightarrow \frac{s \cdot 0,22\,\mathrm{ms} \cdot 1\,\mathrm{V}}{1 + s \cdot 0,66\,\mathrm{ms} + \left(s \cdot 0,22\,\mathrm{ms}\right)^2}$$

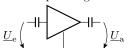


Verstärker

Frequenzgang von Verstärkern



Wechselspannungsverstärker



$$|A| = \frac{\underline{U}_{a}}{\underline{U}_{e}} \uparrow \left| \underbrace{\int_{u_{0}} B}_{f_{u_{0}}} \right| \underbrace{\int_{f_{0}} B}_{f_{0}}$$

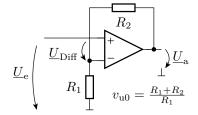
Ein Verstärker ohne induktive und kapazitive Beschaltung hat von f=0 bis nahe an die Übergangsfrequenz f_0 eine betragsmäßig nahezu konstante Verstärkung |A|. Die Übergangsfrequenz ist die, bei der |A| auf $1/\sqrt{2}$ abgefallen ist⁴ und gleichzeitig die Bandbreite B. Weitere Frequenzganganpassung / Bandbreitereduzierung durch externe L- und C-Beschaltung.

⁴Realteil gleich Imaginärteil.

Rückgekoppelter Operationsverstärker

Frequenzgang ohne Rückkopplung:

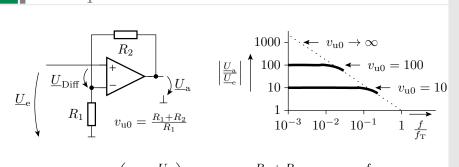
$$\underline{v}_0 = \underline{\underline{U}}_{\text{a}} \approx -j \cdot \frac{f_{\text{T}}}{f}$$



$$\underline{U}_{e} \qquad | \underline{U}_{Diff} \qquad | \underline{U}_{a} \qquad | \underline{U}_{e} \qquad | \underline{U}_{b} \qquad | \underline{U}_{e} \qquad | \underline{U}_{b} \qquad | \underline{U}_{e} \qquad | \underline{U}_{b} \qquad |$$

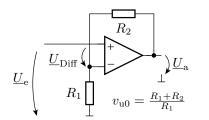
$$\underline{U}_{\mathrm{a}} = \underline{v}_{0} \cdot \left(\underline{U}_{\mathrm{e}} - \frac{\underline{U}_{\mathrm{a}}}{v_{\mathrm{n}0}}\right) \quad \mathrm{mit} \ v_{\mathrm{u}0} = \frac{R_{1} + R_{2}}{R_{1}}; \ \underline{v}_{0} \approx -j \cdot \frac{f_{\mathrm{T}}}{f}$$

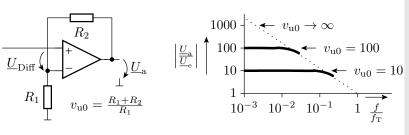
 $(f_{\rm T}$ – Transitfrequenz der Spannungsverstärkung; $v_{\rm n0}$ – Verstärkung für niedrige Frequenzen).



$$\begin{split} \underline{U}_{\mathrm{a}} &= \underline{v}_0 \cdot \left(\underline{U}_{\mathrm{e}} - \frac{\underline{U}_{\mathrm{a}}}{v_{\mathrm{u}0}}\right) \quad \mathrm{mit} \ v_{\mathrm{u}0} = \frac{R_1 + R_2}{R_1}; \ \underline{v}_0 \approx -j \cdot \frac{f_{\mathrm{T}}}{f} \\ \\ \underline{U}_{\mathrm{e}} &= \underline{U}_{\mathrm{a}} \cdot \left(\frac{1}{\underline{v}_0} + \frac{1}{v_{\mathrm{u}0}}\right) \\ \\ \underline{U}_{\mathrm{a}} &= \frac{\underline{U}_{\mathrm{e}}}{\frac{1}{1} + \frac{1}{1}} = \frac{v_{\mathrm{u}0} \cdot \underline{U}_{\mathrm{e}}}{\frac{v_{\mathrm{u}0} \cdot \underline{U}_{\mathrm{e}}}{1 + 1}} = \frac{v_{\mathrm{u}0} \cdot \underline{U}_{\mathrm{e}}}{\frac{j \cdot f \cdot v_{\mathrm{u}0}}{1 + 1}} \end{split}$$

 $(f_{\rm T}$ – Transitfrequenz der Spannungsverstärkung; $v_{\rm u0}$ – Verstärkung für niedrige Frequenzen).





$$\underline{U}_{a} = \frac{v_{u0} \cdot \underline{U}_{e}}{1 + j \cdot \frac{f}{f_{v0}}}$$

mit

$$v_{\rm u0} = \frac{R_1 + R_2}{R_1}; \quad f_{\rm v0} = \frac{f_{\rm T}}{v_{\rm u0}}$$

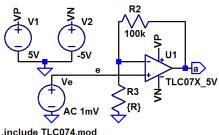
 $(f_{\mathrm{T}} - \text{Transitfrequenz der Spannungsverstärkung}; v_{\mathrm{u}0} - \text{Verstärkung})$ für niedrige Frequenzen; $f_{v0} = \frac{f_T}{v_0}$ – Übergangsfrequenz der Spannungsverstärkung).

Rückkopplung mindert die Verstärkung und erhöht die Bandbreite B. Verstärkungs-Bandbreite-Produkt für Verstärker ohne L- und C-Beschaltung:

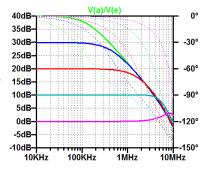
$$B \cdot v \approx f_{\rm T}$$

(B – Bandbreite; v – Verstärkung; $f_{\rm T}$ – Transitfrequenz).

Beispielsimulation:



.include TLC074.mod .ac oct 10 10kHz 1E7Hz .step param R list 1.01k 3.27k 11.1k 46.2k 1E20k



Frequenzgang von Transistorverstärkern

Frequenzgang der Stromverstärkung:

$$\underline{\beta} = \beta_0 \cdot \frac{1}{1 + j \cdot \frac{f}{f_0}}$$

$$\begin{vmatrix} \underline{\beta} \\ \overline{\beta_0} \end{vmatrix} \uparrow 1 \\ 0,1 \\ 0,01 \\ 0.01 \\ 0.1 \\ 1 \\ 1 \\ 0 \\ 0.1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1$$

 β_0 – Grundverstärkung f_0 – Übergangsfrequenz

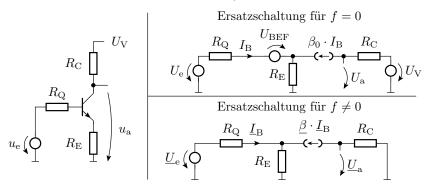
Für hohe Frequenzen $f \gg f_0$ gilt wie beim Operationsverstärker:

$$\underline{\beta} \approx \beta_0 \cdot \frac{1}{j \cdot \frac{f}{f_0}} = -j \cdot \frac{\beta_0 \cdot f_0}{f} = -j \cdot \frac{f_{\mathrm{T}}}{f}$$

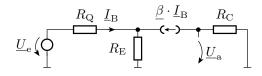
 $f_{\rm T} = \beta_0 \cdot f_0$ – Transitfrequenz, Frequenz für $\beta = -j$.

Emitterschaltung mit Stromgegenkopplung

Emitterschaltung mit Stromgegenkopplung über $R_{\rm E}$ und einer Signalquelle mit Quellenwiderstand $R_{\rm Q}$.



Aus der Ersatzschaltung für $f \neq 0$ berechnet sich der Frequenzgang.



$$\underline{U}_{e} = (R_{Q} + R_{E} \cdot (1 + \underline{\beta})) \cdot \underline{I}_{B}$$

$$\underline{U}_{a} = -R_{C} \cdot \underline{\beta} \cdot \underline{I}_{B}$$

$$= -\frac{R_{C} \cdot \underline{\beta} \cdot \underline{U}_{e}}{R_{Q} + R_{E} \cdot (1 + \underline{\beta})}$$

$$= -\frac{R_{C} \cdot \underline{U}_{Q}}{(R_{Q} + R_{E}) \cdot \frac{1}{\beta} + R_{E}}$$

Einsetzen des Frequenzgangs der Stromverstärkung:

$$\frac{1}{\beta} = \frac{1}{\beta_0} + \frac{j \cdot f}{f_{\rm T}}$$

$$\underline{U}_{a} = -\frac{R_{C} \cdot \underline{U}_{e}}{(R_{Q} + R_{E}) \cdot \left(\frac{1}{\beta_{0}} + \frac{j \cdot f}{f_{T}}\right) + R_{E}} = \frac{v_{V0} \cdot \underline{U}_{e}}{1 + \frac{j \cdot f}{f_{V0}}} \tag{1}$$

Für niedrige Frequenzen beträgt die Verstärkung:

$$v_{\rm V0} = -\frac{R_{\rm C}}{(R_{\rm Q} + R_{\rm E}) \cdot \frac{1}{\beta_0} + R_{\rm E}} \approx -\frac{R_{\rm C}}{R_{\rm E}}$$

Die Übergangsfrequenz der Spannungsverstärkung f_{V0} (Realteil gleich Imaginärteil):

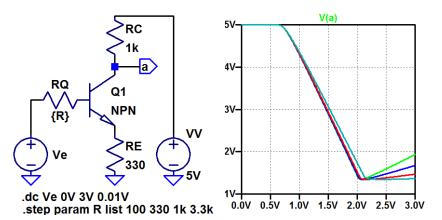
$$(R_{\rm Q} + R_{\rm E}) \cdot \frac{f_{\rm V0}}{f_{\rm T}} = R_{\rm E} + \frac{R_{\rm Q} + R_{\rm E}}{\beta_0}$$
$$f_{\rm V0} = f_{\rm T} \cdot \frac{\frac{R_{\rm Q} + R_{\rm E}}{\beta_0} + R_{\rm E}}{(R_{\rm Q} + R_{\rm E})} \approx f_{\rm T} \cdot \frac{R_{\rm E}}{R_{\rm Q} + R_{\rm E}}$$

Sonderfall kleiner Quellenwiderstand $R_{\rm Q} \ll R_{\rm E}$:

$$f_{\rm V0} \approx f_{\rm T}$$

Maximal Transitfrequenz der Stromverstärkung. Abnahme mit $R_{\rm O}$.

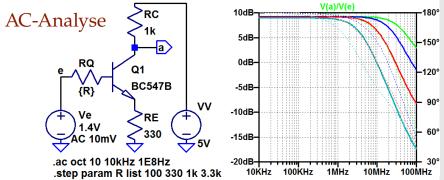
Simulation: DC-Analyse zur Arbeitspunktfestlegung



Für $R_{\rm Q}$ im gesamten variierten Bereich von 100 Ω bis 3,3 ${\rm k}\Omega$ ist $U_{\rm e}=1.4\,{\rm V}$ ein guter Arbeitspunkt.

3. Frequenzbereich

3. Verstärker

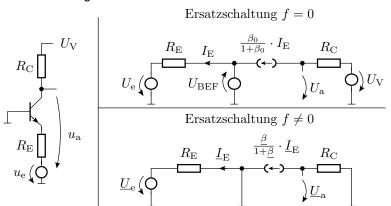


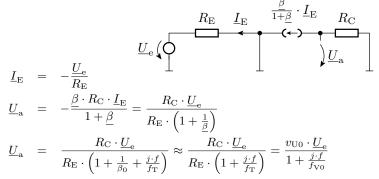
Die Verstärkung für niedrige Frequenzen ist wie vorhergesagt $-\frac{R_{\rm C}}{R_{\rm E}}=\frac{1\,{\rm k}\Omega}{330\,\Omega}=3\approx9.5\,{\rm dB}.$ Erwartete Übergangsfrequenz ($f_{\rm T}$ – Transitfrequenz der Stromverstärkung):

R_{Q}	100 Ω	330 Ω	1 kΩ	3,3 $k\Omega$
$f_{\rm V0} pprox f_{ m T} \cdot rac{R_{ m E}}{R_{ m O} + R_{ m E}}$	$0.77 \cdot f_{\mathrm{T}}$	$0.5 \cdot f_{\mathrm{T}}$	$0.25 \cdot f_{\mathrm{T}}$	$0.09 \cdot f_{\mathrm{T}}$

Basisschaltung

Basis an Masse. Signaleinspeisung am Emitter. Die Übergangsfrequenz der Spannungsverstärkung ist etwa die Transitfrequenz der Stromverstärkung:





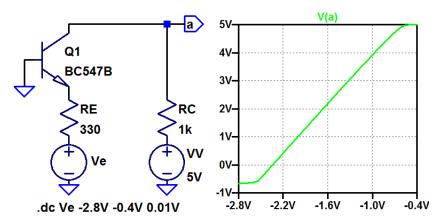
Die Verstärkung für niedrige Frequenzen:

$$v_{\rm V0} \approx R_{\rm C}/R_{\rm E}$$

Übergangsfrequenz der Spannungsverstärkung:

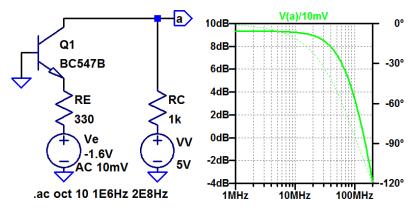
$$f_{\mathrm{V0}} = \left(1 + \frac{1}{\beta_0}\right) \cdot f_{\mathrm{T}} \approx f_{\mathrm{T}}$$

DC-Analyse zur Arbeitspunktfestlegung



Ein guter Arbeitspunkt ist $U_{\rm e} = -1.6 \, \rm V.$

AC-Analyse

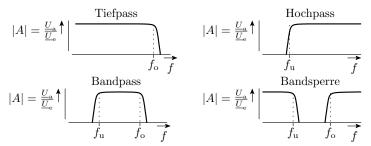


Der Betrag der Verstärkung ist wie bei der Emitterschaltung ca. 9 dB. Die Übergangsfrequenz der Schaltung und die Transitfrequenz des Transistors liegt bei etwa 80...90 MHz.

Filter

Filter

Filter sind Schaltungen zur Einstellung eines gewollten Phasen- und Amplitudenfrequenzgangs. Wichtige Filterarten:



Tiefpässe dienen z.B. als Antialiasing-Filter⁵ vor der Abtastung, Bandpässe zur Sendertrennung beim Rundfunk- und Fernsehempfang. Entwurf im Laplace-Raum (s s statt j ω s).

⁵Beseitigung von Spektralanteilen größer der halben Abtastfrequenz.

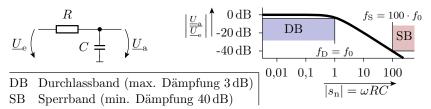
Entwurf von Tiefpässen

Ein Tiefpass hat im Laplace-Raum die Übertragungsfunktion:

$$A\left(s_{\mathbf{n}}\right) = \begin{cases} \frac{A_{0}}{(1+a_{0} \cdot s_{\mathbf{n}}) \cdot \prod_{i=1}^{\frac{N-1}{2}} (1+a_{i} \cdot s_{\mathbf{n}} + b_{i} \cdot s_{\mathbf{n}}^{2})} & \text{für ungerade } N \\ \frac{A_{0}}{\prod_{i=1}^{\frac{N}{2}} (1+a_{i} \cdot s_{\mathbf{n}} + b_{i} \cdot s_{\mathbf{n}}^{2})} & \text{für gerade } N \end{cases}$$

(N – Filtergrad; $a_0,\,a_i,\,b_i$ – Filterkoeffizienten; $s_{\rm n}=\frac{s}{\omega_0}$ – normierte Frequenzvariable).

Der einfachste Tiefpass: RC-Glied mit $s_n = j\omega RC$.



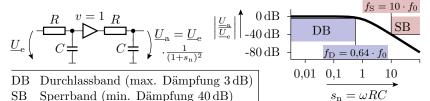
$$\underline{\underline{U}_{a}}_{\underline{U}_{c}} = \underbrace{\frac{1}{j \cdot \omega \cdot C}}_{R + \frac{1}{j \cdot \omega \cdot C}} \\
= \underbrace{\frac{U_{a}}{j \cdot \omega \cdot C}}_{1 + j \cdot \omega \cdot R \cdot C} \\
\Rightarrow \underbrace{\frac{1}{1 + s_{n}}}$$

$$-40 \, dB$$

$$-20 \, dB$$

$$-40 \, dB$$

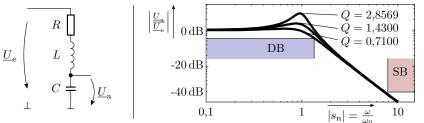
Bei geforderter Mindestdämpfung im Sperrband von 40 dB ist die Anfangsfrequenz des Sperrbands 100-mal so groß wie die obere Frequenz des Durchlassbands. Zur Digitalisierung müsste die Abtastfrequenz $200 \cdot f_0$ sein. Abstandsverringerung durch Erhöhung der Filterordnung N. Verkettung von zwei RC-Gliedern.



G. Kemnitz · Institut für Informatik, TU Clausthal (E2 F3)

Konjugiert komplexe Pole

Tiefpass 2. Ordnung mit konjugiert komplexen Polen:



$$\frac{\underline{U}_{\rm a}}{\underline{U}_{\rm e}} = \frac{\frac{1}{j \cdot \omega \cdot C}}{R + j \cdot \omega \cdot L + \frac{1}{j \cdot \omega \cdot C}} = \frac{1}{1 + \frac{j \cdot \omega}{Q \cdot \omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$

$$\frac{\underline{U}_{\rm a}}{\underline{U}_{\rm e}} = \frac{\frac{1}{j \cdot \omega \cdot C}}{R + j \cdot \omega \cdot L + \frac{1}{j \cdot \omega \cdot C}} = \frac{1}{1 + \frac{j \cdot \omega}{Q \cdot \omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$

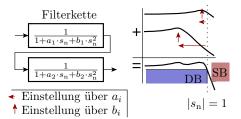
Laplace normiert:

$$\frac{\underline{U}_{\rm a}}{\underline{U}_{\rm e}} = \frac{1}{1+a\cdot s_{\rm n}+b\cdot s_{\rm n}^2} \quad \text{mit } a = \frac{1}{Q}; \ b=1; \ s_{\rm n} = \frac{j\cdot \omega}{\omega_0}$$

Pole:

$$p_{1/2} = -\frac{1}{2 \cdot Q} \pm \sqrt{\frac{1}{4 \cdot Q^2} - 1}$$

Verkettung von Filtern mit konjugiert komplexen Polen⁶:



⁶Verkettung bedeutet Addition der logarithmischen Beträge. G. Kemnitz · Institut für Informatik, TU Clausthal (E2 F3)

Standard-Tiefpassentwürfe

$$A\left(s_{\mathbf{n}}\right) = \begin{cases} \frac{A_{0}}{\left(1 + a_{0} \cdot s_{\mathbf{n}}\right) \cdot \prod_{i=1}^{N-1} \left(1 + a_{i} \cdot s_{\mathbf{n}} + b_{i} \cdot s_{\mathbf{n}}^{2}\right)} & \text{für ungerade } N \\ \frac{A_{0}}{\prod_{i=1}^{N} \left(1 + a_{i} \cdot s_{\mathbf{n}} + b_{i} \cdot s_{\mathbf{n}}^{2}\right)} & \text{für gerade } N \end{cases}$$

 $(N - \text{Filtergrad}; a_0, a_i, b_i - \text{Filterkoeffizienten}; s_n - \text{normierte})$ Frequenzvariable). Für die Filterkoeffizienten a_0, a_i, b_i gibt es Tabellen. Der Filtertyp (Potenz-, Tschebyscheff-, ...) beschreibt die Form des Übergangs vom Sperr- zum Durchlassband. Cauer-Filter haben den steilsten Übergang und die größte Verzerrung⁷. Besselfilter haben im Durchlassbereich eine nahezu konstante Verzögerung (Gruppenlaufzeit), d.h. sie verzerren kaum. Dafür ist für denselben Abstand zwischen Durchlass- und Sperrband ein höherer Filtergrad erforderlich.

⁷Frequenzabhängige Unterschiede der Dämpfung und Verzögerung im Durchlassbereich.

Bessel-Filter

Besselfilter haben konjugiert-komplexe Mehrfachpole:

$$A\left(s_{\mathbf{n}}\right) = \begin{cases} \frac{A_{0}}{\left(1 + a_{0} \cdot s_{\mathbf{n}}\right) \cdot \left(1 + a \cdot s_{\mathbf{n}} + b \cdot s_{\mathbf{n}}^{2}\right)^{\frac{N-1}{2}}} & \text{für ungerade } N \\ \frac{A_{0}}{\left(1 + a \cdot s_{\mathbf{n}} + b \cdot s_{\mathbf{n}}^{2}\right)^{\frac{N}{2}}} & \text{für gerade } N \end{cases}$$

Filtergrad ungerade

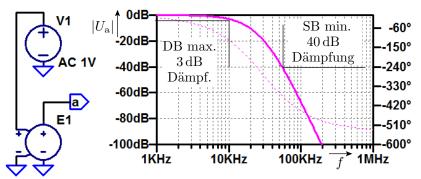
N	a_0	a	b
1	1,0000	-	-
3	0,5098	1,0197	0,2599
5	0,3856	0,7712	0,1487
7	0,3226	0,6453	0,1401
9	0,2829	0,5659	0,0801

Filtergrad grade

N	a	b
2	1,2872	0,4140
4	0,8700	0,1892
6	0,6999	0,1225
8	0,6017	0,0905
10	0,5358	0,0718

 $(N - \text{Filtergrad}; a_0, a_i, b_i - \text{Filterkoeffizienten})$. Die verketteten Tiefpässe zweiter Ordnung sind identisch, d.h. im Gegensatz zu den anderen Filtertypen braucht man nur einen Tiefpass 2. Ordnung zu entwerfen und verkettet davon mehrere.

Simulation eines Besselfilters 6. Ordnung



LAPLACE=1/(1+0.6999*s/{om0}+0.1225*(s/om0)^2)^3
.ac oct 10 1kHz 100kHz .param om0=2*pi*10kHz

Das Durchlassband endet bei 10 kHz und das Sperrband fängt bei 50 kHz an.

Entwurf als RLC-Filter

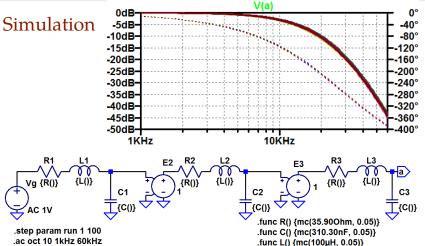
Restliche Berechnung über Koeffizientenvergleich:

$$s_{\rm n} = \frac{j\omega}{2\pi \cdot 10\,\text{kHz}}$$

$$0,1225 \cdot \left(\frac{j\omega}{2\pi \cdot 10\,\text{kHz}}\right)^2 = -\omega^2 LC \quad C = \frac{31,03\,\mu\text{s}^2}{L}$$

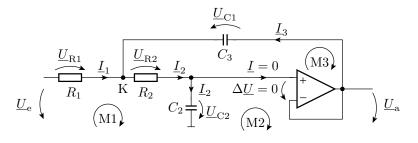
$$\frac{0,6999 \cdot j\omega}{2\pi \cdot 10\,\text{kHz}} = j\omega RC; \quad R = \frac{11,139\,\mu\text{s}}{C}$$

Beispielwerte: $L=100\,\mu\mathrm{H}$, $C=310.30\,\mathrm{nF}$ und $R=35.90\,\Omega$



Die Funktionen R(), C() und L() erzeugen Zufallswerte im Bereich $\pm 5\%$ vom Nennwert. Die Step-Anweisung wiederholt die Simulation 100 mal.

Entwurf mit Operationsverstärkern



$$\begin{array}{llll} {\rm K:} & \underline{I}_{1} - \underline{I}_{2} + \underline{I}_{3} & = & 0 \\ {\rm M1:} & R_{1} \cdot \underline{I}_{1} + \left(R_{2} + \frac{1}{j \cdot \omega \cdot C_{2}}\right) \cdot \underline{I}_{2} & = & \underline{U}_{\rm e} \\ {\rm M2:} & -\frac{1}{j \cdot \omega \cdot C_{2}} \cdot \underline{I}_{2} + \underline{U}_{\rm a} & = & 0 \\ {\rm M3:} & -R_{2} \cdot \underline{I}_{2} - \frac{1}{j \cdot \omega \cdot C_{1}} \cdot \underline{I}_{3} & = & 0 \end{array}$$

Auflösen nach $\underline{U}_{\rm a}=f\left(\underline{U}_{\rm e}\right)$ durch eliminieren der 3 unbekannten Ströme:

$$\frac{\underline{U}_{\mathbf{a}}}{\underline{U}_{\mathbf{e}}} = \frac{1}{1 + j\omega \cdot C_2 \cdot (R_1 + R_2) - \omega^2 \cdot R_1 \cdot R_2 \cdot C_1 \cdot C_2} = \frac{1}{1 + a_i \cdot s_n + b_i \cdot s_n^2}$$

Unter Vorgabe von C_1 und C_2 betragen die Widerstände:

$$R_{1/2} = \frac{a \cdot C_2 \mp \sqrt{a^2 \cdot C_2^2 - 4 \cdot b \cdot C_1 C_2}}{4\pi \cdot f_0 \cdot C_1 C_2}$$

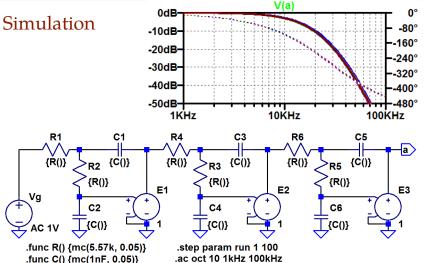
Damit der Wert unter der Wurzel positiv ist:

$$\frac{C_2}{C_1} \ge \frac{4 \cdot b}{a^2} = \frac{4 \cdot 0,1225}{0,6999^2} = 1 \implies C_2 = C_1 = C$$

Mit den Bessel-Koeffizienten wird der Ausdruck unter der Wurzel genau für $C_2=C_1=C$ null. Damit werden auch beide Widerstände gleich:

$$R_1 = R_2 = \frac{a}{4 \cdot \pi \cdot 10 \text{ kHz} \cdot C} = \frac{0,6999}{4 \cdot \pi \cdot 10 \text{ kHz} \cdot C} = \frac{5,5696 \,\mu\text{s}}{C}$$

Beispielwerte: $C = C_1 = C_2 = 1 \, \text{nF} \text{ und } R = R_1 = R_2 = 5.5696 \, \text{k}\Omega$.



Die rückgekoppelten Operationsverstärker sind durch gesteuerte Spannungsquellen mit Verstärkung eins ersetzt.

Hochpass und Bandpass

Tiefpass-Hochpass-Transformation: Ersatz $s_n \mapsto 1/s_n$. Als Beispiel unser Besselfilter 6. Ordnung:

$$A_{\text{TP}}(s_{\text{n}}) = \frac{1}{(1 + 0.6999 \cdot s_{\text{n}} + 0.1225 \cdot s_{\text{n}}^2)^3}$$

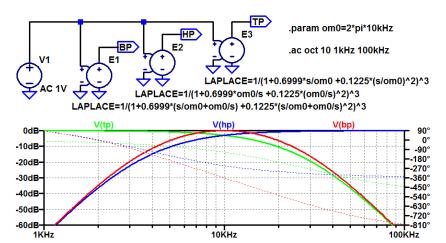
Korrespondierender Hochpass:

$$A_{\text{HP}}(s_{\text{n}}) = \frac{1}{\left(1 + 0.6999 \cdot \frac{1}{s_{\text{n}}} + 0.1225 \cdot \frac{1}{s_{\text{n}}^2}\right)^3}$$

Tiefpass-Bandpass-Transformation: Ersatz $s_{
m n}\mapsto rac{1}{\Delta\omega_{
m n}}\cdot\left(s_{
m n}+rac{1}{s_{
m n}}
ight)$ $(\Delta\omega_n$ – relative Breite des Durchlassbands. Als Beispiel unser Besselfilter 6. Ordnung mit einer relativen Bandbreite $\Delta \omega_n = 1$:

$$A_{\rm BP}\left(s_{\rm n}\right) = \frac{1}{\left(1 + \frac{0.6999}{\Delta\omega_{\rm n}} \cdot \left(s_{\rm n} + \frac{1}{s_{\rm n}}\right) + \frac{1.225}{\Delta\omega_{\rm n}^2} \cdot \left(s_{\rm n} + \frac{1}{s_{\rm n}}\right)^2\right)^3}$$

Simulation von Tief-, Hoch- und Bandpass



Spektralanalyse

4. Spektralanalyse

Das Spektrum eines Signals

Im Frequenzbereich wird ein periodisches Zeitsignal durch eine Summe zeitabhängiger komplexer Exponentialfunktionen dargestellt:

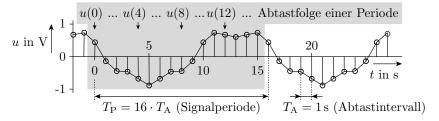
$$x(t) = \sum_{m=-\infty}^{\infty} \underline{X}_m \cdot e^{j \cdot m \cdot \omega_0 \cdot t}$$

Die Spektralwerte $\underline{X}_m \neq 0$ bilden das Spektrum. Sie haben je eine Amplitude und eine Phase. Berechnung durch Fouriertransformation.

- Wiederholung Berechnung Spektrum.
- Weitere im Abschnitt untersuchte Fragestellungn: Die Ausgabe eines linearen Systems hat nur Spektralwerte $\neq 0$ für Freguenzen. die im Eingabespektrum enthalten sind. Wie ist das bei nichtlinearen Systmen?

Fouriertransformation

Fouriertransformation



Berechnung von N Spektralwerten aus N äquidistanten Abtastpunkten eines bandbegrenzten Signals. Abtasttheorem:

$$X_m=0 \text{ für } |f_{\mathrm{m}}| \geq f_{\mathrm{max}} = \frac{N}{2 \cdot T_{\mathrm{P}}} \quad |X| \uparrow \qquad |X| \geq 0 \quad |X| = 0$$
 (T_{P} – Signalperiode).

Die Spektrakwerte ergeben sich aus den Abtastwerten über ein lineares Gleichungssystem:

$$\begin{pmatrix} \frac{X}{X} \left(-\frac{N}{2}\right) \\ \frac{X}{X} \left(-\frac{N}{2}+1\right) \\ \vdots \\ \frac{X}{X} \left(\frac{N}{2}-1\right) \end{pmatrix} = Q^{-1} \cdot \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{pmatrix}$$

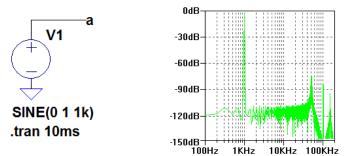
 Q^{-1} – $N \times N$ -Matrix mit den komplexen Koeffizienten:

$$q_{mn} = \frac{1}{N} \cdot e^{-j \cdot \frac{2 \cdot \pi \cdot m \cdot n}{N}}$$

Praktische Berechnung mit der FFT (Fast Fourier Transformation), die durch geschickes Ausklammern nur $N \cdot \log(N)$ statt $N \cdot N$ komplexe Multiplikationen erfordert.

Spektrum aufgezeichneter Zeitfolgen mit **LTSpice**

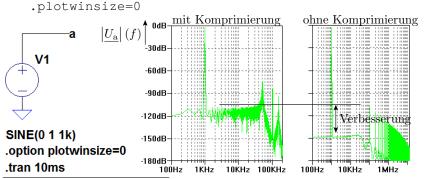
Das Spektrum kann für jedes bei der Simulation aufgezeichnete Signal berechnet und angezeigt werden. Menü: »view«, »fft«, Signalauswahl, im Beispiel V(a):



Angezeigt wird der Betrag der Spektralwerte für positive Frequenzen.

$$V(a) = 1 V \cdot \sin\left(\frac{2\pi \cdot f}{1 \text{ kHz}}\right)$$

sollte nur für $|f|=1\,\mathrm{kHz}$ einen Spektralwert $\neq 0$ enthalten. Ursache weiterer Werte $\neq 0$ sind numerische Fehler, reduzierbar mit⁸:



 $^{^8 \}mbox{Deaktiviert}$ die Datenkompression für aufgezeichnete Signalverläufe. http://www.audio-perfection.com/spice-ltspice/distortion-measurements-with-ltspice.html

Spektrum eines Rechtecksignal

 Ein symmetrisches Rechtecksignal hat die Fourie-Reihe (vergl. Elektronik I, Foliensatz 7):

$$f_M(t) = \frac{4}{\pi} \cdot \sum_{m=0}^{M} \frac{\sin\left(\frac{\pi \cdot m}{2}\right)}{m} \cdot \cos\left(\frac{2\pi \cdot m \cdot t}{T}\right)$$

Annäherung bis zur 9-fachen Frequenz:

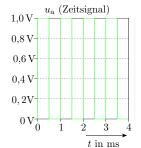
$$f_{9}(t)$$
 $\uparrow 0$ $\downarrow 0$ $\downarrow 0$ $\downarrow 0$ $\downarrow 0$ $\downarrow 1$ $\downarrow 1$

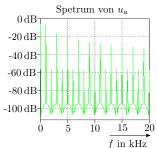
$$f_{9}\left(t\right) = \frac{4}{\pi} \cdot \left(\cos\left(\frac{2\pi \cdot t}{T}\right) - \frac{\cos\left(\frac{2\pi \cdot 3 \cdot t}{T}\right)}{3} + \frac{\cos\left(\frac{2\pi \cdot 5 \cdot t}{T}\right)}{5} - \dots + \frac{\cos\left(\frac{2\pi \cdot 9 \cdot t}{T}\right)}{9}\right)$$

Nur Spektralwerte ungeradzahliger Vielfacher der Grundfrequenz.

Bestimmung durch Simulation

PULSE(0 1 0 1u 1u 0.5m 1m) .four 1kHz 10 V(a) .option plotwinsize=0 .tran 10ms





- Theoretisch nur Spektralwerte für ungeradzahlige Vielfache der Grundfrequenz (Oberwellen) von 1 kHz.
- Geringe Spektralwerte geradzahliger Oberwellen durch Differenz zwischen Ein- und Ausschaltzeit.
- Spektralwerte $< -80 \, \mathrm{dB}$ durch numerische Fehler.
- Zusätzlich Berechnung der Phase mit ».four 1kH 10 V(a)«.

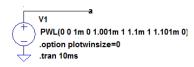
Mit der zusätzlichen Spice-Anweisung

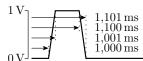
.four 1kHz 10 V(a)

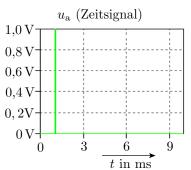
werden die Spektralwerte, im Beispiel für die 1kHz-Grundwelle und 9 Oberwellen (Vielfache der Grundfrequenz berechnet und im ErrLog-File incl. Phase dargestellt:

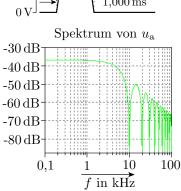
_		_		
Harmonic	Frequency	Fourier	Normalized	Phase
Number	[Hz]	Component	Component	[degree]
1	1.000e+03	6.366e-01	1.000e+00	-0.36°
2	2.000e+03	2.000e-03	3.142e-03	89.28°
3	3.000e+03	2.122e-01	3.333e-01	-1.08°
4	4.000e+03	2.000e-03	3.141e-03	88.56°
5	5.000e+03	1.273e-01	2.000e-01	-1.80°
6	6.000e+03	2.000e-03	3.141e-03	87.84°
7	7.000e+03	9.092e-02	1.428e-01	-2.52°
8	8.000e+03	2.000e-03	3.141e-03	87.12°
9	9.000e+03	7.070e-02	1.111e-01	-3.24°
1.0	1.000e+04	1.999e-03	3.141e-03	86.40°

Das Spektrum eines periodischen Impulses









Für
$$f < \frac{1}{2\pi \cdot t_{\rm Puls}} = 1.6 \, {\rm kHz} \, (t_{\rm Puls} - {\sf Pulsbreite}) \, \left| \underline{U_{\rm a}} \right| = {\rm konst.}$$

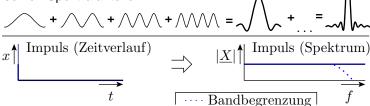
Spektren nicht periodischer Signale

Das Spektrum eines nicht periodischen Signals ergibt sich durch den Grenzwertübergang der Anzahl der Abtastpunkte je Periode $N \to \infty$. Beispiel Impuls. Erster Abtastwert $A \cdot N$, alle anderen null:

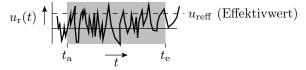
$$x(n) = \lim_{N \to \infty} \begin{cases} A \cdot N & n = 0\\ 0 & \text{sonst} \end{cases}$$

Spektralwerte aller Frequenzindizes: $\underline{X}(m) = A$.

Zusammensetzen eines Impulses aus seinen Spektralanteilen:



Die aufsummierten Kosinussignale für den Impuls haben alle dieselbe Amplitude und Phase null. Konstante Amplitude für alle Frequenzen hat auch ein ganz anderes Zeitsignal, das sog. weiße Rauschen, das sich aus vielen kleinen Impulsen zu zufälligen Zeitpunkten zusammensetzt (siehe später Folie 109).



Das Amplitudenspektrum allein reicht nicht für eine eindeutige Signalbeschreibung.

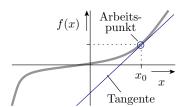
In der Praxis werden Spektren meist aus Abtastfolgen berechnet, die nicht genau eine Signalperiode lang sind, überlagert von einem Quantisierungsrauschen. Das sich dabei typisch ergebende Amplitudenspektrum besteht aus einem Grundrauschen und Peaks für die periodischen Anteile.

Klirrfaktor

Spektrum und Nichtlinearität

- Die Ausgabe eines linearen Systems hat nur Spektralwerte $\neq 0$ für Frequenzen, die im Eingabespektrum enthalten sind.
- Nichtlineare Systeme werden im Arbeitspunkt linearisiert durch Vernachlässigung der quadratischen, kubischen etc. Terme:

$$f\left(x\right) = \underbrace{f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0)}_{\text{lineare N\"aherung}} + \underbrace{\frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \frac{f'''(x_0)}{3!} \cdot (x - x_0)^3 + \dots}_{\text{vernachl\"assigte nichtlineare Anteile}}$$

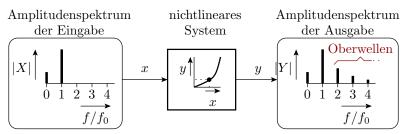


Was entsteht, wenn ein Kosinussignal mit n potenziert wird?

$$\cos(\omega t)^n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \cos((n-2k) \cdot \omega \cdot t)$$
 (2)

Spektralanteile mit der 2 bis *n*-fachen Frequenz.

Was entsteht aus einem Kosinussignal an einer nichtlinearen Kennlinie, bei der die Abweichung vom Arbeitspunkt entsprechend Taylor-Reihe linear + quadratisch + kubisch + ...eingeht?



Spektralanteile für Summen- und Differenzfreguenzen.

Herleitung Gleichung 2:

$$\cos(\omega t)^n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \cos((n-2k) \cdot \omega \cdot t)$$

$$\cos(\omega \cdot t)^n = \left(\frac{1}{2} \cdot \left(e^{j \cdot \omega \cdot t} + e^{-j \cdot \omega \cdot t}\right)\right)^n$$

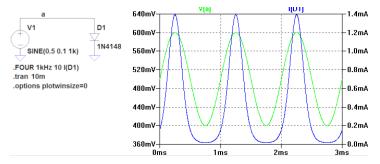
Nach dem Binomischen Lehrsatz:

$$\left(e^{j\cdot\omega\cdot t} + e^{-j\cdot\omega\cdot t}\right)^n = \frac{1}{2^n} \cdot \sum_{k=0}^n \binom{n}{k} \cdot \underbrace{e^{j\cdot\omega\cdot t\cdot(n-k)} \cdot e^{-j\cdot\omega\cdot t\cdot k}}_{e^{j\cdot\omega\cdot t\cdot(n-2k)}}$$

Summe enthält paarweise konjugiert komplexe Terme, z.B für n=4:

k	0	1	2	3	4
Exponent: $n-2k$	4	2	0	-2	-4
$\begin{pmatrix} n \\ k \end{pmatrix}$	1	4	6	4	1

Signalverzerrung an einer Diode



- Die Strom-Spannungs-Kennlinie einer Diode ist näherungsweise eine Exponentialfunktion.
- Der untere Teil des Ausgabesignals wird gestaucht und der obere gestreckt.

Spektralwerte des Diodenstroms berechnet mit:

.four 1kHz 10 I(D1)

```
Frequency Fourier Phase
[Hz] Component [degree]
1.000e+03 5.927e-04 0.01°: Grundwelle
2.000e+03 2.740e-04 -89.99°: 1. Oberwelle
3.000e+03 9.073e-05 -179.98°: 2. Oberwelle
4.000e+03 2.303e-05 90.03°: 3. Oberwelle
5.000e+03 4.649e-06 0.03°: 4. Oberwelle
6.000e+03 7.509e-07 -89.96°: 5. Oberwelle
7.000e+03 9.288e-08 -179.96°: 6. Oberwelle
8.000e+03 6.882e-09 89.99°: 7. Oberwelle
9.000e+03 4.010e-10 -178.20°: 8. Oberwelle
1.000e+04 2.657e-10 90.08°: 9. Oberwelle
Total Harmonic Distortion: 48.864496%
```


Klirrfaktor (Harmonic Distortion)

Der Klirrfaktor beschreibt Anteil der Energie der Oberwellen an der Gesamtenergie. Er berechnet sich als Verhältnis der Effektivwerte

$$k = \sqrt{\frac{\sum_{m=2}^{\infty} |\underline{X}_m|^2}{\sum_{m=1}^{\infty} |\underline{X}_m|^2}}$$

(m – Frequenzindex) und ist ein Maß der Verzerrung. Bei Audiosignalen wird ein großer Klirrfaktor als »klirren« wahrgenommen.

Für den Diodenstrom im Beispiel gilt:

$$k = \sqrt{\frac{(2,740 \cdot 10^{-4})^2 + (9,073 \cdot 10^{-5})^2 + \dots}{(5,927 \cdot 10^{-4})^2 + (2,740 \cdot 10^{-4})^2 + (9,073 \cdot 10^{-5})^2 + \dots}}$$

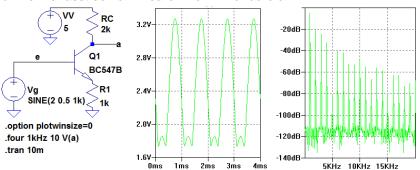
= 48,8%

Das Ergebnis steht unter den Spektralwerten im SPICE Error Log:

Total Harmonic Distortion: 48.864496%

Der Klirrfaktor eines Verstärkers

Wenn das Eingabesignal eines Verstärkers zu groß ist, übersteuert er, d.h. er verlässt seinen linearen Kennlinienbereich:



Das Eingabesignal ist $U_{\rm g}=2\,{
m V}+0.5\,{
m V}\cdot\sin{(2\pi\cdot 1\,{
m kHz}\cdot t)}$. Für zu große Werte der Eingangsspannung geht der Transistor in die Übersteuerung. Die Verstärkung wechselt von -2 nach 1.

Fourier-Koeffizienten und Klirrfaktor aus dem SPICE Error Log:

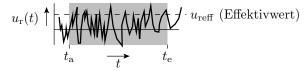
Harmonic	Frequency	Fourier	Normalized	Phase
Number	[Hz]	Component	Component	[degree]
1	1.000e+03	7.883e-01	1.000e+00	-180.00°
2	2.000e+03	1.396e-01	1.770e-01	-90.04°
3	3.000e+03	8.518e-02	1.081e-01	179.96°
4	4.000e+03	3.380e-02	4.287e-02	90.03°
5	5.000e+03	1.275e-04	1.618e-04	44.24°
6	6.000e+03	1.318e-02	1.671e-02	89.62°
7	7.000e+03	1.124e-02	1.426e-02	-0.06°
8	8.000e+03	3.207e-03	4.068e-03	-88.60°
9	9.000e+03	3.201e-03	4.060e-03	-1.90°
10	1.000e+04	4.716e-03	5.983e-03	-90.54°
Total Ha	armonic Dist	cortion: 21	1.307795%	

Rauschen

5. Rauschen

Rauschen

Jede Spannung und jeder Strom ist mit einem Rauschsignal überlagert:



Rauschsignale werden durch ihren Effektivwert (Leistungsmittelwert), Abschätzung für das Zeitfenster $[t_{\rm a},\,t_{\rm e}]$

$$u_{\text{reff}} = \sqrt{\frac{1}{t_{\text{a}} - t_{\text{e}}} \cdot \int_{t_{\text{a}}}^{t_{\text{e}}} u_{\text{r}}^{2}(t) \cdot dt}$$

und seine spektrale Rauschdichte beschrieben:

$$u_{\mathbf{r}}(f) \uparrow \underbrace{ \int_{f_{\mathbf{u}}}^{f_{\mathbf{o}}} u_{\mathbf{r}}(f)^{2} \cdot df}_{f_{\mathbf{u}}}$$

SNR und Simulationsart »noise«

Nutzsignale sind nur auswertbar, wenn sie vom Rauschen unterscheidbar sind. Maß für die »Trennbarkeit« ist der Signal-Rausch-Abstand SNR (Signal-Noise-Ratio) als Verhältnis des Leistungsumsatzes von Nutzund Rauschsignal an einem Widerstand und gleich dem Verhältnis der Effektivwertquadrate:

$$SNR = \frac{U_{\text{eff}}^2}{u_{\text{reff}}^2}$$

LT-Spice berechnet in der Simulationsart »noise« äquivalente Rauschdichten für auf den Schaltungsausgang transformiertes:

- Wärmerauschen an Widerständen.
- Stromrauschen (Schrotrauschen) an pn-Übergängen,
- gesamte äguivalente Rauschdichte am Ausgang,
- frequenzabhängige Verstärkung (gain) und
- gesamte äquivalente Eingangsrauschdichte (Ausgangsrauschdichte durch »gain«).

Daraus lassen sich unter Angabe des Frequenzbereichs die Effektivwerte des Rauschens und damit die Signal-Rausch-Abstände bestimmen.

Wärmerauschen

Wärmerauschen an Widerständen

Driftende Leitungselektronen erzeugen mit großer Rate statistisch unabhängige Spannungs- und Stromimpulse kurzer Dauer, deren Überlagerung zu einem Spektrum mit frequenzunabhängiger konstanter Amplitude und zufälliger Phase führt (weißes Rauschen):

Rauschspannungsdichte:
$$u_{\text{r.R}}(f) = \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R}$$

Effektivwert^(*): $u_{\text{reff.R}} = \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R \cdot \Delta f}$
Rauschstromdichte: $i_{\text{r.R}}(f) = \frac{u_{\text{r.R}}(f)}{R} = \sqrt{\frac{4 \cdot k_{\text{B}} \cdot T}{R}}$
Effektivwert^(*): $i_{\text{reff.R}} = \frac{i_{\text{reff.R}}(f)}{R} = \sqrt{\frac{4 \cdot k_{\text{B}} \cdot T \cdot \Delta f}{R}}$
(3)

 $(k_{
m B}=1,\!38\cdot 10^{-23} {
m rac{Ws}{K}}$ – Boltzmannkonstante; T – Temperatur in Kelvin; $^{(*)}$ – bei frequenzunabhängiger Rauschdichte; Δf – genutzte Bandbreite). Die effektive Rauschleistung beträgt unabhängig vom Widerstandswert:

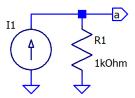
$$P_{\text{reff R}} = u_{\text{reff R}} \cdot i_{\text{reff R}} = 4 \cdot k_{\text{B}} \cdot T \cdot \Delta f$$

Beispiel zum Wärmerauschen an einem Widerstand

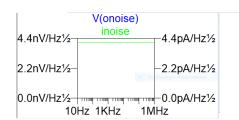
$$T = 300 \,\mathrm{K};\, R = 1 \,\mathrm{k}\Omega;\, \Delta f = 1 \,\mathrm{MHz}$$
:

$$u_{\text{reff.R}} = \sqrt{4 \cdot 1,38 \cdot 10^{-23} \frac{\text{Ws}}{\text{K}} \cdot 300 \,\text{K} \cdot 1 \,\text{k}\Omega \cdot 1 \,\text{MHz}} = 4,07 \,\mu\text{V}$$
 $i_{\text{reff.R}} = \frac{u_{\text{reff.R}}}{R} = 4,07 \,\text{nA}$
 $P_{\text{reff.R}} = u_{\text{reff.R}} \cdot i_{\text{reff.R}} = 16,6 \cdot 10^{-15} \,\text{W}$

Kontrolle durch Simulation:



.noise V(a) I1 oct 10 10 1E6 .meas noise nr1 integ V(r1) .meas noise no integ V(onoise)

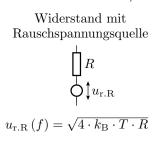


nr1: INTEG(v(r1))=4.07135e-06 FROM 10 TO 1e+06 no: INTEG(v(onoise))=4.07e-06 FROM 10 TO 1e+06 ni: INTEG(inoise)=4.07135e-09 FROM 10 TO 1e+06

Rauschquellen

Rauschquellen

Rauschen wird durch ungerichtete Spannungs- oder Stromquellen mit ihrer Rauschdichte modelliert, die auch frequenzabhängig sein kann:



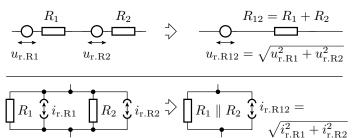
Widerstand mit Rauschstromquelle

$$i_{\text{r.R}}\left(f\right) = \sqrt{\frac{4 \cdot k_{\text{B}} \cdot T}{R}}$$

Die Rauschdichten der einzelnen Quellen werden in äquivalente Rauschdichten am Schaltungsein- oder Ausgang umgerechnet und zusammengefasst.

Zusammenfassen von Rauschquellen

Addition unkorrelierter Rauschanteile (Rauschdichten, Effektivwerte) nach Pythagoras:

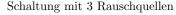


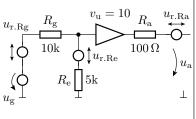
Wärmerauschdichte von zwei Widerständen in Reihe:

$$\sqrt{u_{\text{r.R1}}^{2}(f) + u_{\text{r.R2}}^{2}(f)} = \sqrt{\sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R_{1}^{2}} + \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R_{2}^{2}}}$$

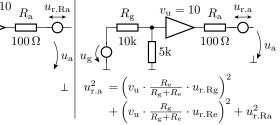
$$= \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot (R_{1} + R_{2})}$$

Rauschquellentransformation





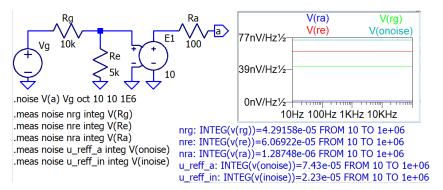
äquivalentes Ausgangsrauschen



Für $T = 300 \,\mathrm{K}$ und $\Delta f = 1 \,\mathrm{MHz}$:

· ·	
effektive Rauschspannung	auf Ausgang transformiert
	$nrg = \frac{10.5}{15} \cdot u_{\text{reff.rg}} = 42.9 \mu\text{V}$
$u_{\text{reff.re}} = \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R_{\text{e}} \cdot \Delta f} = 9.10 \mu\text{V}$	$nre = \frac{10.10}{15} \cdot u_{\text{reff.re}} = 60.7 \mu\text{V}$
$u_{\text{reff.ra}} = \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R_{\text{a}} \cdot \Delta f} = 1,29 \mu\text{V}$	$nra = u_{\text{reff.ra}} = 1,29 \mu\text{V}$
$u_{\text{reff.a}} = \sqrt{nrg^2 + nre^2 + nra^2} = 74.3 \mu\text{V}$	$u_{\text{reff.in}} = \frac{u_{\text{reff.a}}}{v_{\text{u}} \cdot \frac{R_{\text{e}}}{R_{\sigma} + R_{\text{e}}}} = 22.3 \mu\text{V}$

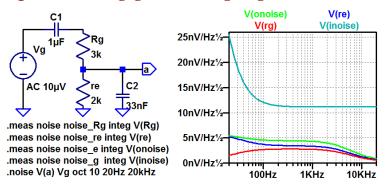
Kontrolle mit dem Simulator



Der Signalrauschabstand für $U_{\rm eff,g} = 100 \,\mu \rm V$:

$$SNR = \left(\frac{U_{\text{eff.g}}}{\text{V(inoise)}}\right)^2 = \left(\frac{100 \,\mu\text{V}}{22.3 \,\mu\text{V}}\right)^2 = 22.3$$

Frequenzabhängige Übertragungsfunktion



Bei einer frequenzabhängigen Übertragungsfunktion sind auch die Verstärkungen und Dämpfungen der Rauschanteile frequenzabhängig. Die äquivalente Eingangsrauschdichte ist unterhalb des genutzten Frequenzbereichs deshalb so groß, weil dort die Verstärkung, durch die dividiert wird. klein ist.

ohne Kapazitäten:

```
noise_rg: INTEG(v(rg))=3.83661e-007 FROM 20 TO 2e4
noise re: INTEG(v(re)) = 2.71289e-007 FROM 20 TO 2e4
noise_e: INTEG(v(onoise))=4.69887e-007 FROM 20 ...
noise_g: INTEG(v(inoise))=7.0483e-007 FROM 20 ...
```

mit Kapazitäten:

```
noise_rg: INTEG(v(rg))=2.07926e-007 FROM 20 TO 2e4
noise_re: INTEG(v(re))=2.56701e-007 FROM 20 TO 2e4
noise e: INTEG(v(onoise))=3.30346e-007 FROM 20 ...
noise_g: INTEG(v(inoise))=1.57938e-006 FROM 20 ...
```

Die Dämpfung für niedrige und hohe Frequenzen reduziert das Rauschen etwas.

Stromrauschen

Stromrauschen an pn-Übergängen

Stromschwankungen kleinster Ströme durch die diskrete Natur der Ladungsträgerbewegung. Kann als Prasseln der Elektronen verstanden werden, die Spannungsschwellen passieren (etwa wie Steine, die einen Berghang herunterfallen). Temperaturunabhängig! Spice berücksichtigt

einen frequenzunabhängigen Anteil (Schrotrauschen):

Rauschdichte:
$$i_{\text{r.sid}}(f) = \sqrt{2 \cdot q \cdot I}$$

Effektivwert: $i_{\text{reff.sid}} = \sqrt{2 \cdot q \cdot I \cdot \Delta f}$

■ 1/*f*-Rauschen (Funkelrauschen):

$$\begin{array}{lll} \text{Rauschdichte:} & i_{\text{r.fid}}\left(f\right) & = & \sqrt{\frac{k_{\text{F}} \cdot I^{A_{\text{F}}}}{f}} \\ \text{Effektivwert:} & i_{\text{reff.fid}} & = & \sqrt{k_{\text{F}} \cdot I^{A_{\text{F}}} \cdot \ln\left(\frac{f_{\text{o}}}{f_{\text{u}}}\right)} \end{array}$$

 $(q=1.6\cdot 10^{-19}{
m As}$ – Elementarladung; I – Dioden-, Basis- oder Kollektorstrom (Gleichanteil); Δf – Bandbreite; $k_{
m F}$ – Funkelrauschkoeffizient, Spice-Parameter Kf); $A_{
m F}$ – Funkelrauschexponent, typ. 1...2, Spice-Parameter Af).

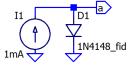
Untersuchung der Rauschanteile einer Diode:

 $I=1\,\mathrm{mA},\,f_\mathrm{u}=10\,\mathrm{Hz};\,f_\mathrm{o}=10\,\mathrm{MHz}\approx\Delta f,\,\mathrm{Rs}=0{,}568\,\Omega;\,r_\mathrm{D}=\frac{\mathrm{d}\,U_\mathrm{D}}{\mathrm{d}\,I_\mathrm{D}}$ für $I_\mathrm{D}=1\,\mathrm{mA}$ laut Simulation $46\,\Omega;\,\mathrm{Kf}=1{,}2;\,\mathrm{Af}=10^{-15}\mathrm{A}^{0{,}2}$:

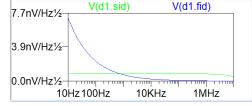
$$\begin{array}{rcl} i_{\rm r.sid} &=& \sqrt{2\cdot 1,6\cdot 10^{-19}{\rm As}\cdot 1\,{\rm mA}} = 17,9\,\frac{{\rm pA}}{\sqrt{\rm Hz}}\\ u_{\rm r.sid} &=& i_{\rm r.sid}\cdot r_{\rm D} = 817\,\frac{{\rm pV}}{\sqrt{\rm Hz}}\\ * &u_{\rm reff.sid} &=& u_{\rm r.sid}\cdot \sqrt{10\,{\rm MHz}} = 2,60\,\mu{\rm V}\\ * &u_{\rm reff.rs} &=& \sqrt{4\cdot k_{\rm B}\cdot 300\,{\rm K}\cdot{\rm Rs}\cdot 10\,{\rm MHz}} = 307\,{\rm nV}\\ i_{\rm r.fid}\left(f\right) &=& \sqrt{\frac{10^{-15}{\rm A}^{0.8}\cdot (1\,{\rm mA})^{1.2}}{f}} = \sqrt{\frac{251\cdot 10^{-19}\,{\rm A}^2}{f}}\\ i_{\rm reff.fid} &=& \sqrt{10^{-15}{\rm A}^{0.8}\cdot (1\,{\rm mA})^{1.2}\cdot \ln\left(\frac{10\,{\rm MHz}}{10\,{\rm Hz}}\right)} = 2,08\,{\rm nA}\\ * &u_{\rm reff.fid} &=& i_{\rm reff.fid}\cdot r_{\rm D} = 85,7\,{\rm nV} \end{array}$$

^{*} Rauschanteile der Ausgangsspannung, die mit Simulationsart »noise« berechnet werden.

Kontrolle der Abschätzungen durch Simulation:



.noise V(a) I1 oct 10 10 10E6 .meas noise d1_fid integ V(d1.fid) .meas noise d1_rs integ V(d1.rs) .meas noise d1_sid integ V(d1.sid) .model 1N4148_fid ako: 1N4148 af=1.2, KF = 1E-15



d1_fid: INTEG(v(d1.fid))=8.29582e-08 FROM 10 TO 1e+07 d1_rs: INTEG(v(d1.rs))=3.06842e-07 FROM 10 TO 1e+07 d1_sid: INTEG(v(d1.sid))=2.16292e-06 FROM 10 TO 1e+07

Anmerkungen:

- Im Modell für die Diode 1N4148 ist kein 1/f-Rauschen berücksichtigt. Die hinzugefügten Parameterwerte für Kf, Af wurden willkürlich gewählt.
- Der Bahnwiderstand auf der Folie zuvor $Rs = 0.568 \, \Omega$ steht im Spice-Modell. $r_{\rm D} = 46 \, \Omega$ wurde mit TF-Simulation bestimmt.
- Abweichung zwischen $u_{\rm reff.sid}$ und d1_sid sowie $u_{\rm reff.rs}$ und d1_rs resultieren aus dem Absinken von V(d1 sid) ab $\approx 2\,{\rm MHz}$.

Anmerkungen zum 1/f-Rauschen

Das 1/f-Rauschen hat die unterschiedlichsten Ursachen:

- Diffusion von Atomen und Molekülen an Grenz- und Oberflächen.
- Schwankungen der Gate-Ladungen bei MOSFETs,

Richtwert für die Frequenz, bis zu der das 1/f Rauschen größer als das Stromrauschen ist9:

- Röhren: ≈10 kHz
- Bipolartransistoren: ≈1 kHz
- Sperrschicht-FETs ≈100 Hz
- MOSFETS ≈10 MHz

Der Effektivwertanteil unterhalb des betrachteten Frequenzbereichs

$$\lim_{f \to 0} \sqrt{k_{\rm F} \cdot I_{\rm D}^{A_{\rm F}} \cdot \ln \left(\frac{f_{\rm u}}{f_{\rm u'}}\right)}$$

 $(f_{n'}$ – sich aus der Lebensdauer ergebende untere Grenzfrequenz, Größenordnung 1/Jahre) ist die Parameterdrift.

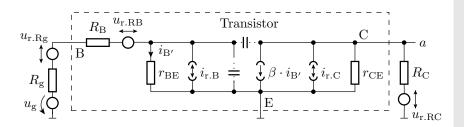
⁹Weiterführende Literatur: Rudolph Müller: Rauschen. Springer. 1990.

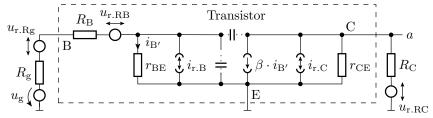
Bipolartransistoren

Rauschen von Bipolartransistoren

LTSpice berechnet für Bipolartransist. äquivalente Rauschanteile für

- Stromrauschen Basisstrom
 - frequenzunabhängiger Anteil: .sib
 - 1/f-Anteil: .fib
- Stromrauschen Kollektorstrom: .sic
- Wärmerauschen Bahnwiderstände: .rb, .rc. .re
- und das äquivalente Gesamtrauschen des Transistors jeweils transformiert auf den Schaltungsausgang.



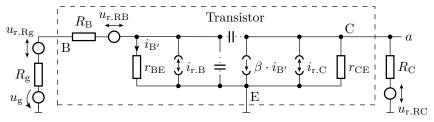


Kleinsignalverhalten:

$$\begin{split} i_{\mathrm{B'}} &= \frac{u_{\mathrm{g}}}{R_{\mathrm{g}} + R_{\mathrm{B}} + r_{\mathrm{BE}}} \\ u_{\mathrm{a}} &= -\left(R_{\mathrm{C}} \parallel r_{\mathrm{CE}}\right) \cdot \beta \cdot i_{\mathrm{B'}} = \frac{-\left(R_{\mathrm{C}} \parallel r_{\mathrm{CE}}\right) \cdot \beta}{R_{\mathrm{g}} + R_{\mathrm{B}} + r_{\mathrm{BE}}} \cdot u_{\mathrm{g}} \\ v_{\mathrm{u}} &= \frac{u_{\mathrm{a}}}{u_{\mathrm{g}}} = -\frac{\left(R_{\mathrm{C}} \parallel r_{\mathrm{CE}}\right) \cdot \beta}{R_{\mathrm{g}} + R_{\mathrm{B}} + r_{\mathrm{BE}}} \end{split}$$

Äquivalentes Ausgangsrauschen:

$$u_{\rm r,a}^2 = (u_{\rm r,a,Bg}^2 + u_{\rm r,a,BB}^2) \cdot v_{\rm u}^2 + \dots$$

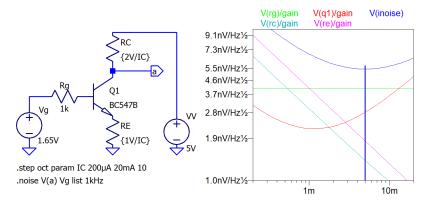


Äquivalentes Ausgangsrauschen:

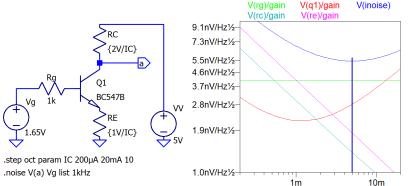
$$\begin{aligned} u_{\text{r.a}}^2 &= \left(u_{\text{r.Rg}}^2 + u_{\text{r.RB}}^2\right) \cdot v_{\text{u}}^2 \\ &+ \left(\beta^2 \cdot \left(\frac{R_{\text{g}} + R_{\text{B}}}{R_{\text{g}} + R_{\text{B}} + r_{\text{BE}}}\right)_{(*)}^2 \cdot i_{\text{r.B}}^2 + i_{\text{r.C}}^2\right) \cdot (R_{\text{C}} \parallel r_{\text{CE}})^2 \\ &+ u_{\text{r.RC}}^2 \cdot \left(\frac{r_{\text{CE}}}{r_{\text{CE}} + R_{\text{C}}}\right)_{(**)}^2 \end{aligned}$$

 $(_{(*)}$ – Stromteilerregel; $_{(**)}$ – Spannungsteilerregel).

Rauschverhalten eines Transistorverstärkers



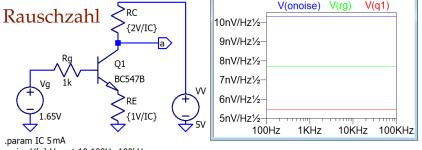
Die von 200 μ V bis 20 mV durchgesteppte Variable IC legt $R_{\rm C}$ und $R_{\rm E}$ so fest, dass sich etwa Verstärkung 2 mit dem vorgegebenen Kollektorstrom »IC« einstellt. Es wird nur die Rauschdichte für 1 kHz geteilt durch die Verstärkung (äquivalente Eingangsrauschdichte).



Mit Zunahme von $I_{\rm C}$:

- bleibt die äquivalente Rauschdichte von R_g unverändert,
- lacksquare nimmt die für $R_{
 m C}$ und $R_{
 m E}$ mit Exponent $\sim I_{
 m C}^{-0.5} 0.5$ ab und
- durchläuft die für den Transistor ein Minimum bei $I_{\rm C} \approx 1\,{\rm mA}$.

Das Minimum des äquivalenten Eingangsrauschen unter Berücksichtigung auch des von $R_{\rm E}$ und $R_{\rm C}$ liegt etwa bei $I_{\rm C}\approx 5\,{\rm mA}.$



.noise V(a) Vg oct 10 100Hz 100kHz .meas noise reff Rg integ V(Rg) .meas noise reff a integ V(onoise) .meas noise reff q1 integ V(q1)

reff rg: INTEG(v(rg))=2.43458e-06 FROM 100 TO 100000 reff_a: INTEG(v(onoise))=3.26019e-06 FROM 100 TO 100000 reff q1: INTEG(v(q1))=1.72941e-06 FROM 100 TO 100000

Für $I_{\rm C} = 5 \, \rm mA$ sind die Rauschdichten im betrachteten Frequenzbereich von 100 Hz bis 100 kHz konstant. Effektivwertanteile Ausgangsrauschen:

 $R_g: 2,43 \,\mu\text{V}$

■ Transistor: $1.73 \,\mu\text{V}$

insgesamt: $3.26 \,\mu\text{V}$

■ Rest ($R_{\rm E}$ und $R_{\rm C}$): $\sqrt{(3.26)^2 - (2.43)^2 - (1.73)^2 \,\mu V} = 1.31 \,\mu V$

Rauschzahl

Die Rauschzahl F beschreibt die Verschlechterung des Signal-Rausch-Abstands durch einen Verstärker als Verhältnis des SNR, wenn nur das Rauschen des Generatorwiderstands berücksichtigt wird:

$$SNR_{\rm Rg} = \frac{U_{\rm eff.a}^2}{u_{\rm reff.a.Rg}^2}$$

zum SNR unter Berücksichtigung aller Rauschquellen

$$SNR = \frac{U_{\text{eff.a}}^2}{u_{\text{reff.a}}^2}$$

Die Effektivwerte des Nutzsignals $u_{\rm eff.a}$ kürzt sich heraus:

$$F = \frac{SNR_{\text{Rg}}}{SNR} = \frac{u_{\text{reff.a}}^2}{u_{\text{reff.a}}^2 Rg}$$

Für das Beispiel:

$$F = \left(\frac{3,26\,\mu\text{V}}{2,43\,\mu\text{V}}\right)^2 = 1.8$$

Zum Signal-Rausch-Abstand

Signal-Rausch-Abstand ist das Verhältnis der Leistung des Nutzsignals zur Leistung des Rauschsignals an einem Lastwiderstand:

$$SNR = \frac{U_{\text{eff}}^2}{u_{\text{reff}}^2}$$

Der Effektivwert des Nutzsignals ist der Leistungsmittelwert (engl. root mean square):

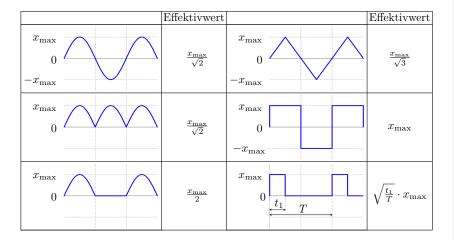
$$U_{\text{eff}} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} u(t)^2 \cdot dt}$$

(T – Dauer Signalperiode). Für Kosinussignale $u(t) = \hat{U} \cdot \cos(\omega t)$:

$$U_{\text{eff}} = \frac{1}{\sqrt{2}} \cdot \hat{U}$$

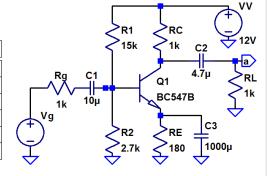
 $(\hat{U} - Amplitude).$

Effektivwerte wichtiger Signalformen



Beispielrechnung

	$u_{ m reff}$ an a
$R_{\rm G}$	227 μV
R_1	58 μV
R_2	138 μV
Q1	150 μV
gesamt	310 μV
gain	44,83



Kosinusförmiges Eingabesignal: $u_g = 30 \,\mu\text{V} \cdot \cos{(2 \cdot \pi \cdot 10 \,\text{kHz})}$.

- Effektive Eingangsspannung: $U_{\rm eff.g} = \frac{30\,\mu\rm V}{\sqrt{2}} = 21,21\,\mu\rm V$
- Effektive Ausgangsspannung: $U_{\rm eff.a} = 44,83 \cdot u_{\rm eff.e} = 951 \,\mu {\rm V}$
- \blacksquare äquivalente Gesamtrauschspannung an a: $u_{\rm reff.a}=310.4\,\mu\rm V$
- \blacksquare äquivalentes Eingangsrauschen: $u_{\rm reff.g}=6.92\,\mu{\rm V}$

Signal-Rausch-Abstand:

$$SNR = \frac{(951 \,\mu\text{V})^2}{(310.4 \,\mu\text{V})^2} = \frac{(21,21 \,\mu\text{V})^2}{(6.92 \,\mu\text{V})^2} = 9,4$$