

Einführung in die Elektronik Große Übung 4

G. Kemnitz, C. Giesemann

Institut für Informatik, Technische Universität Clausthal
16. Oktober 2023

Aufgabe 4.1: Verstärkerentwurf

Entwerfen Sie mit Hilfe von Operationsverstärkern Verstärker mit einem Eingangswiderstand, der gegen unendlich geht, und

- \blacksquare einer Verstärkung von +4
- 2 mit einer Verstärkung von -4.

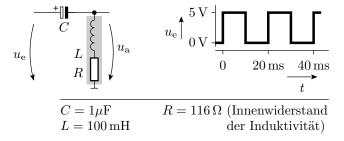
Aufgabe 4.2: Sensorverstärker

Entwerfen Sie einen Messverstärker für den Sperrstom einer Photodiode mit einer Verstärkung von $-10\,\mathrm{V/mA}$. Über der Photodiode soll während der Messung eine konstante, vom Messstrom unabhängige Spannung $U_\mathrm{D} = -U_\mathrm{V}$ anliegen.

Aufgabe 4.3: Analogrechner

Gesucht ist eine Schaltung mit der Funktion:

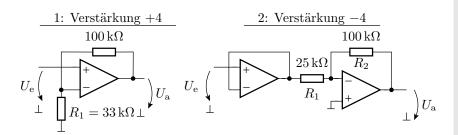
$$U_{\rm a} = 2\,\mathrm{V} - 2\cdot U_{\rm e}$$


- II Entwerfen Sie die Schaltung unter Verwendung eines Operationsverstärkers und Spannungsversorgung mit $\pm 5\,\mathrm{V}.$
- 2 In welchem Bereichdarf die Eingangspannung liegen, damit die Ausgangsspannung U_a im Bereich von $\pm 4\,\mathrm{V}$ liegt?

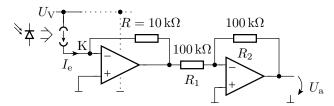
Aufgabe 4.4: Schwellwertschalter

Entwerfen Sie unter Einbeziehung eines Operationsverstärkers einen invertierenden Schwellwertschalter mit Hysterese. Gegeben sei: $U_{\rm trig,r}=3\,{\rm V},\ U_{\rm trig,f}=\frac{4}{3}\,{\rm V},\ U_{\rm a0}=0\,{\rm V}$ und $U_{\rm a1}=5\,{\rm V}.$

G. Kemnitz, C. Giesemann · Institut für Informatik, Technische Universität Clausthal 16. Oktober 2023


Aufgabe 4.5: Zeitdiskrete Simulation

- Ersatzschaltung mit der Kapazität und der Induktivität als Quellen.
- Gleichungen für die Berechnung des Stromes durch die Kapazität und die Spannung über der Induktivität.
- Gesamtalgorithmus für die zeitdiskrete Simulation der Schaltung. Anfangswerte: $u_{\rm C}(0) = 0$, $i_{\rm L}(0) = 0$.


Lösung zu Aufgabe 4.1

- Lösbar mit einem normalen nichtinvertierenden Verstärker.
- Der hochohmige Eingang erfordert einen Spannungsfolger vor dem invertierenden Verstärker. Berechnung der Widerstandswerte wie üblich.

Lösung zu Aufgabe 4.2

Die Photodiode lässt sich als Stromquelle modellieren. Ein Stromverstärker lässt sich nach einem ähnlichen Prinzip wie ein invertierender Verstäker realisieren. Für K gilt $I_{\rm e}+\frac{U_{\rm a}}{R}=0$. Wegen negativer Verstärkung zusätzlicher negierender Verstärker erforderlich.

