
Softprocessor SP4: Arrays, Pointer and

Bit-manipulation

July 10, 2011

Abstract

Contents of this lecture are arrays, pointer and bit-manipulation.

1 Arrays

An array is a summary of same elements. The declaration is similar to a single
element, but beside the variable name the element number is given:

char str[10]; // array with 10 signed 8 bit numbers

int Liste[20]; // array with 20 signed 32 bit umbers

The compiler reserves a continous area in the memory. Single array elements
will be addressed by an index (Abb. 1). The element address is calculated
always as follows:

a (i) = a (0) + k · i
(i � index; a (i) � adress of element i; k � byte number of an array element).

A string will be saved as an array of characters (8 bit numbers). After the
last character the character value �0� is the end identi�er. When working with
strings always take care of one aspect: the string has to be shorter than the
array which should contain them. Otherwise write and read operations will
overwrite or read bytes after the array which maybe contain other information.

’a’ ’l’ ’l’ ’o’ 0

str[9]

4 Byte 4 Byte

Feld[0]

4 Byte

Feld[1] Feld[19]

str
+2 +4 +6 +8 +10

Feld
+4 +8 +76 +80

frei

str[0]Name

Inhalt

Adresse

’H’

Figure 1: Arrangement of arrays in the memory (Name = name, Inhalt =
content, Feld = array element, Adresse = address, frei = empty)

1

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 2

Aufgabe 4.1: String mirroring

Write a main program which declares a string variable with the length of 100.
In an in�nite loop always the following should happen:

• waiting for the input of a line closed with a line break,

• returning of all characters to the PC (aka echo), writing of the characters
into the string variable,

• if there is a line break the string shall be closed with the character value
0 1 and

• the length of the string followed by an double point and the content of the
memory shall be returned mirrored to the PC.

Test example:

Input: 123tHallotWelt!t ←↩

Output: 123tHallotWelt!t

15:t!tleWtollaHt321

Aufgabe 4.2: Array sorting

Write a main program which declares an array for unsigned 16 bit numbers with
20 elements. In the in�nite loop always the following should happen:

• waiting for the input of maximal 20 number sequences seperated by spaces
ending by line break. The number range is from 0 to216 − 1 = 65535.

• converting of the numbers with the function �term_read_unsigned� from
the �le �utils.c� from the lecture before in number values and saving them
one after another in the array

• sorting the numbers saved in the array in ascending oder with Bubble Sort
and

• converting the sorted numbers one after another with the function �term_write_unsigned�
from thr �le �utils.c� in character sequences and returning them seperated
with spaces to the PC.

Test example:

Input: 123t11t17t122t87t12←↩

Output: 11t12t17t87t122t123

Advices:

1The characters of the line break shall not copied to the string.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 3

• It is allowed to modify your function �term_read_unsigned� from �utils.h�
so that it returns the input sequence as echo.

• You need two additional counter variables, such as one for the number of
saved values.

• Bubble Sort consists of two nested loops. The inner loop runs from the �rst
to the before last element of the array, reads the selected and the following
element, compares them and changes them if the following element is
greater than the actual. The outer loop repeates the inner loop as long
as there are changes inside. Figure 2 shows the sorting sequence for the
example.

2 Pointer

Variables, constants, but also functions are all data objects in the memory
arrangened from a certain addresses.. A Pointer is a variable which contains
an address. At declaration a type of values on which the pointer is allowed to
point is declared, e. g. �int�:

int *ptr, *ptr1;

(* � operator for �value of a pointer�). The address (the value of the pointer)
of a variable will created with �&�. For e�cient programming when working

78 122 123

11 78 122 123
Bubble 5: kein Tausch, Abbruch äußere Schleife

12 17

11 17 12
Bubble 4: 1× tauschen 12 17

123
11 123

11
17

12317 122
122 123 78

12378
123
12

12

11 17 122 78
78 122 12

12 122 123

11 17 78 12
12 78 122 123

Bubble 1: 5× tauschen

Bubble 2: 2× tauschen

Bubble 3: 1× tauschen

Figure 2: Sorting sequence for the example (tauschen = changing, Bubble 5: no
change, break of the outer loop)

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 4

with arrays pointer will be used. As follows an array with a pointer pointing on
the address of the �rst array element is declared:

int Feld[20];

ptr = &Feld[0]; // identical with ptr = Feld

The array name without index value is identical to the pointer value from the
beginning of the array. For calculation of the address from other array elements
the index value will be added to the address of the array beginning:

ptr1 = ptr + 4; // addition of 4×element size

In the example the elements are from type �int�, so the size is 4 byte. The
address increases by 16 (byte storing spaces) (Abb. 1). To get the value of
element 4 �&(ptr + 4)�, �&(Feld+4)� or �Feld[4]� are possible.

String variables are arrays with characters (char) as elements. The values
will be saved as sequences of character values ending with a real zero as ending
delimiter (Abb. 1). Loops of the type �Repeat for every character� will be
programmed as �Repeat, until the chracter value is zero�. In the following
example the string constant �Text�, one string variable �Feld� and two pointers
are declared. The pointer gets the starting addresses of both arrays. In the loop
every character value from �Text� will be copied to the same position in �Feld�
until the pointer from �Text� points on the value �0�. After the loop the
additional ending zero will be added to the copied string in the string variable
�Feld�:

char Text = "Hallo";

char Feld[20], *dest, *src;

src = Text;

dest = Feld;

while(&src != 0)

{

*dest = *src;

src++;

dest++;

}

*dest = 0;

Parameter passing to subprograms up to now was as readable �values�. The
values were copied to local variables of the subprogram. Value assignments of
the local variables don't change the variable values of the calling program. The
only return value is the function value returned with the return statement. In
the same kind as before the values, also pointer variables of data objects can be
passed. With the passing of addresses the subprogram gets the possibilty to ac-
cess data objects of the calling program read- and writeable. With the keyword
�const� the access is limited to �read only� again. The following subprogram
for copying of two strings gets two pointer passed, one on the beginning of the
array from the data source and one on the beginning of the data destination.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 5

It copies like the example before, all characters including the ending zero from
the character array the pointer �src� is pointing on, into the array �dest� is
pointing on:

char *strcpy(char *dest, const char *src)

{

while(&src != 0)

{

*dest = *src;

src++;

dest++;

}

*dest = 0;

return dest;

}

Aufgabe 4.3: Basic functions for text processing

Write a program to the following header �string.h� with these functions for text
processing:

#ifndef STRING_H

#de�ne STRING_H

char *strcpy(char *dest, const char *src);

char *strcat(char *dest, const char *src);

int strlen(const char *str);

char *append_unsignd(char *dest, int Zahl);

void gets(char *str);

void puts(char *str);

#endif

The function �strcpy� was explained before. The fuction �strcat� should con-
catenate the source string with the destination string. In the �rst loop the
pointer from the destination string has to set on the ending zero. For the fol-
lowing copy process in he easiest case �strcpy� with the destination counter on
the ending zero will be called. The function �strlen� should return the length of
the string. The function �append_unsigned� should return the passed number
value converted in a string and copy it characterwise at the end of the string.
The function �gets� should write the via UART received characters one after
another in the character array �str� is pointing on. If an line break is received
the string should be closed with �0� and the function should return to the call-
ing program. The function �puts� should send the string �str� is pointing on
bytewise via UART. If the closing zero is reached the function should send a
line break and end itself.

The test frame is the usual main program with in�nite loop. In the in�nite
loop after the request of two input texts, both strings shall be written one behind
the other in one string. The constant text �Length:� and the text representation
of the text length, determined with �strlen�, shall be attached:

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 6

...

char *Feld[100], tmp[80];

while(1)

{

puts("Inputtext 1: \n");

gets(tmp);

strcpy(Feld, tmp);

puts("Inputtext 2: \n");

gets(tmp);

strcat(Feld, tmp);

strcat(Feld, " Text length: ");

append_unsigned(Feld, strlen(Feld));

puts(Feld);

}

Example:

Inputtext 1: Thetsunt←↩

Inputtext 2: shinestbright.←↩

Thetsuntshinestbright. text length:

22

Check questions:

• What happens with the implemented example functions if the string, gen-
erated with �strcpy� or �strcat� is longer than the array, in which it is
saved?

• How have the function to be completed, to avoid this error?

Aufgabe 4.4: Pointer and references

Write a main program starting with the following declarations and value assign-
ments:

int main()

{

unsigned int x, y, z;

x = 12; y = 5; z = 88;

...

and returning the following output text after every character input:

variable | value | address

x | ? | ?

y | ? | ?

z | ? | ?

Instead of �?� the value and the address of the variable shall be written.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 7

3 Bit manipulation

At input, output and other programming tasks close to the hardware often single
bits or parts of bit vectors are handled. Therefore are bitwise logic operations
and shifting operations:

negation AND OR EXOR shift left shift right

~a a & b a | b a ^ b a << n a >> n

(a, b � constants or variables with the same type; n � shifting in bit).

To switch on the LED with the number n ∈ {0, 1, . . . 7} a variable for the
output value is needed. To this value the by n places left shifted �1� has to be
OR-interconnected and the resulting value is the output to the LEDs:

char LED;

int n;

...

LED = LED | (1 < < n); // setting of Bit n

XGpio_mWriteReg(XPAR_AUSGABESCHNITTSTELLE_BASEADDR, 0, LED);

For inverting, the OR-interconnection will be replaced by an EXOR-interconnection
and for switching o� the AND-interconnection will be replaced by the negated
value:

LED = LED ^ (1 < < n); // inverting of bit n

LED = LED & ~(1 < < n); // deleting of bit n

Aufgabe 4.5: Bit manipulation

Write a program with an in�nite loop waiting for �E� or �A� from the UART
followed by a digit between �0� and �7� to switch the corresponding LED on
or o�.

Test example:

0
1
2
3
4
5
6

E2
E5
E4
A5
E7
A2

LeuchtdiodenEingabeTestschritt

(Testschritt = Step, Eingabe = Input, Leuchtdioden = LEDs)

