Softprocessor SP2: Basic Course
C-Programming

July 7, 2011

Abstract

In the first softprocessor lecture an embedded computer system was
developed and tested. In this lecture small programming exercises us-
ing distinctions of cases and loops in C will be introduced respectively
refreshed.

1 Introduction

1.1 Hardware-Configuration and Header-Files

The developed computer system from the first lecture consists of a MicroB-
lace processor, a dualport memory, two parallel interfaces, one serial interface
(UART) and one debug interface (fig. 1). After switching on the supply power
the bitstream of the computer system has to be transferred into the FPGA on
the development board. The C-program from the first lecture is the frame for
own programs in this lecture. It starts with the »inlcude« statements of the
header files:

7
programmable output interface '—» LD(0 to 7)---- -
logic circuit
il e input interface |<— SW(0 to 7)--- e
computer system UART TxD --- de.sktop pPC
RxD---{ terminal program
debug interface |<—> JTAG (seriell test- and
1 programming bus)
microblaze_0 (BTN3)
(Prozessor) <~— Reset-------- Aj’“
«<—Clk -~ 50 MHz
ILMBI I DILLE interface signals
IMem_Controller | DMem_Controller ILMB lokal instruction memory bus
dualport memory DLMB lokal data memory bus
(8 kByte) PLB lokal peripherial bus

Figure 1: Developed computer system from the first lecture

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 2

#include "xparameters.h"
tinclude "xgpio_1.h"
tinclude "xuartlite_1.h"

The file yxparameters.h« contains the hardware-configuration parameters and
the other two files the parameters for basic read- and write-functions.

1.2 Main program

The main program for the next exercises is the given program of the first exercise
with minor improvements.

char z;
putchar(z) ; // send character
z = getchar(); // receive character

After the include-statements the following macros are defined!:

#define putchar(c) \

XUartLite_SendByte (XPAR_UART_BASEADDR, c)
#define getchar() \

XUartLite_RecvByte (XPAR_UART_BASEADDR)

(\ — character for continuation of a macro definition in the next line). The
main program »main«, which starts after »run« or pressing the reset-button
»BTN3«, defines at begin the string »Hallo Welt\r\n« as constant, a pointer
variable »str«, pointing on the beginning of the string and an 8 bit variable for
saving one character:

int main()

{
char *str = "Hallo Welt\r\n";
char data;

In the following loop, to send the string, the function to send single characters
should be replaced with the earlier defined macro »putchar(...)«:

while (¥str !'= 0)
{

putchar (*str) ;
str++;

}

The statement »*str« describes the value at the memory address of »str«. The
statement »str++« is shifting the pointer one character ahead. In the following
infinite loop every time when a byte from the UART is received it will be shown
on the LEDs and sent back to the PC. Also the byte-value of the switches will
be read and sent to the PC.

LA macro definition describes an intelligent textsubstitution, the preprocessor — a program

for preconditioning the program before compiling — replaces the function call after »#define«
with the following function call.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 3

while (1)
{// - body of the loop---------—-—-—————-
data = getchar();
XGpio_mWriteReg (XPAR_AUSGABESCHNITTSTELLE_BASEADDR, O, data);
putchar (data) ;
data = XGpio_mReadReg(XPAR_AUSGABESCHNITTSTELLE_BASEADDR) ;
putchar (data) ;
[/ e
}
}

In the next excercises of this course the string which was sent to the PC in the
first loop will be replaced with »excercise i.j« (i.j — excercise number) and the
loop body of the infinite loop will be replaced by the programm, which should
be developed.

1.3 Preparation for a new project

Copy the SDK subfolder from the previous exercise in the project directory for
the second exercise:

e Change to the »soft processor« directory
e mkdir Aufg2
e cp - r Aufgl/SDK Aufg2/SDK
Start the program SDK via the menu:
e » Anwendungen« > » Umgebung« > »Xilinx Platformstudio (SDK)«

go to the subdirectory » Aufg2/SDK/SDK workspace«. In the workspace make
a new softwareproject for every exercise:

e »File« > »New« > »Manages Make C ...« > Project Name: »Aufg ...«
Make a new program file »main.c« in the new project folder:
e »File« > »New« > »Source File« > Folder: » Aufg ...«, File: ymain 2 1l.c«

(..._2_ 1. — Number of practical course and exercise). Copy the content from
the project »Introduction« to the file » Testl.c« and modify it. Figure 2 shows
the result of the preparation steps for the first programming exercise. Before
it is possible to test the self developed program with »Run« or »Debug« the
supply power have to be connected to the developing board and the bitstream
with the hardware description has to be loaded into the FPGA:

e »Tools« > »Programm FPGA« > »Save and Program«

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 4

BE C/C++ Projects 2 =a *main_2 1.c & [¢ Testl.c

g & v 1#include "xparameters.h"
z#include "xgpio_L.h"

= 77 /homefgkemnitz/Prakt_SoftprozessorfaufgLfst s#include "xuartlite_l.h"
4

< [microblaze_0 (microblaze)
P £ Caesar {SW_Plattform}
< % Einfuehrung {SW_Plattform}

S#define putchar(c) XUartlLite_ SendByte(XPAR_UART_BASEADDR, c)
G#define getchar() XuartLite RecvByte(XPAR_UART_BASEADDR)

nt main()

P < Binaries

b (= Debug char *str = "\ri\nfufgabe 2.1: Zeichenklassifizierung\rin";
char data;

b [d Testl.c

while (*str != 0}
{
putchar (*str);
str++;

t

b Wls sw_Plattform

= % Zeichenklassifizierung {Sw_Plattform}
P € Binaries
P (= Debug

b [g main_2_1.c while (1)

{
data = getchar();
/7 hier Programm einflgen
putchar('s');

Figure 2: Project preparation of the first programming exercise

2 Case distinctions

Case distinctions are control flow statements to describe a conditional execution
of statements. Only the if-statement will be considered here.

The following describtions of program constructs lean on BNF (Bakus-Naur-
Form). Keywords will be bold printed and placeholder, which have to be re-
placed with program lines after some rules, will be printed in étalic. Strings in
[...] can be there one or none time, while strings in {...} can be there many-
times. The if-statement if is followed by a condition in brackets, a sequence
of statements executed if the condition is true. Each statement is closed ba a
semicolon. A sequence of some statements has to be in {...}:

if (condition) {
{statement;}

}

{else if (condition) {
{statement;}

}

}
[else{

{condition;}

3

After the if-branch can as many as needed else-if-branches follow which will be
executed if the own condition is true and none of the if-conditions before is true.
At the end there could be an else-branch, then the following statements will be
executed if none of the if-conditions is true.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 5

The condition — one expression with a number value — is - true - if the value
not equals zero, and - false - if the value is zero :

| equal [unequal | less | less or equal | greater | greater or equal |
(=1 "= <] <= [>] >= |

The comparison results have the value range false« for 0 and 1 for »true«. The
combination of comparison results is handled via logical operations:

’negation \ AND \ OR‘
P &

The logic expression

is written in C as:
((a<b || b>=B) && d==3)

In the next example two counters »CtA« und » CtB« as unsigned integer and
»s« as character are defined. If the value of »s« is the characer »a« the first
counter should increase, if it is »b« the second counter should increase:

int CtA, CtB;
char s;

if (s==’a’) CtA++;
else if (s==’b’) CtB++;

The statement ’a’ stands for the character value »ax, it is 0x61, and the state-
ment » CtA+-+« increases the counter value by one. The {...} around the se-
quences of the if- and else-if-branch are not necessary here, because both se-
quences consists of only one statement. Figure 3 shows the ASCII table again,
it is needed for the exercises.

Aufgabe 2.1: String classification

In every pass of the infinite loop a character from the PC via UART should be
read and classfied after the table below. The result — a character — shall be send
back to the PC.

] Inputcharacter \ Outputcharacter ‘
Digit (°0’, ...,’9) A
Alphabetic character (’a’, ..., z’, 'A’, ..., 'Z’ ‘B’
Control character with a character value less than 32 ¢’
(hexadecimal 0x20) or greater than 126 (hexadecimal
0x7E)
all other characters 'S’

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 6

Dec Hxoct Char Dec Hx Qct Himl Chr [Dec Hx Oct Himl Chr] Dec Hx Oct Html Chr
0 0 000 NUL {rmll) 32 20 040 Space| 64 40 100 s#6d; (@ 96 60 140 `
1 1 001 30H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; 4 | 97 g1 141 a a
Z & 002 3T¥ (start of text) 34 22 042 " " 66 42 102 &«#66; B 93 62 142] b
3 3 003 ET¥ (end of text) 35 23 043 # # 67 43 103 &«#67; C 99 A3 143 c C©
4 4 004 EOT j(end of transmission) 36 24 044 ů 5§ 65 44 104 «#68; D (100 64 144 d d
5 5 005 ENOQ (encquiry) 37 25 045 %: % 69 45 105 «#659; E (101 65 145 e
& 6 006 ACE [acknowledge) 38 26 046 #3858 & 70 46 106 «#70; F [102 66 146 &#l02; €
7 7 007 BEL (bell) 39 27 047 ' 71 47 107 «#71:; G (103 67 147 g O
& & 010 BX (backspace) 40 28 050 (72 48 110 «#72; H 104 65 150 h:; h
9 9 011 TAE (horizontal tah) 41 29 051)) 73 49 111 I I [105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 24 052 &#d2; * 74 44 112 «#74; T (106 64 152 l06; 3
11 B 013 VT (wertical tah) 43 ZB 053 + + 75 4B 113 &«#75; K [107 6B 153 «#107: k
1z C 014 FF (NP forwm feed, new page)| 44 2C 054 &#dd; 76 4C 114 &«#76; L 108 6C 154 «#108; 1
13 D 015 CR (carriage return) 45 ZD 055 - - 77 4D 115 «#77:; M (109 6D 155 m m
14 E 016 50 (shift out) 46 ZE 056 . . 78 4E 116 &«#78; N (110 6E 156 n n
15 F 017 3I (shift in) 47 ZF 057 &«#47; / 79 4F 117 &«#79; 0 (111 6F 157 &#lll; o
16 10 020 DLE (data link escape) 48 30 060 - 0 g0 50 120 P P (112 70 160 p:; b
17 11 021 DCl (dewice control 1) 49 31 06l 1 1 81 51 121 «#81; 0 |113 71 16l q:; o
18 12 02z DCZ (dewice control 2) 50 32 062 2 2 92 52 122 R R (114 72 162 &#ll4; ¢
19 13 023 DC3 (dewice control 3) 51 33 063 3 3 3 53 123 S 3 (115 73 163 s =
Z0 14 024 DC4 (device control 4) 52 34 064 4 4 g4 54 124 «#84; T (116 74 164 s#ll6; ©
Z1 15 025 NAE (negative acknowledge) 53 35 065 5 5 g5 55 125 «#85; U (117 75 165 u u
ZZ 16 026 5YN (synchronous idle) 54 36 066 6 6 g6 56 126 «#86; V (118 76 lag v v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 g7 57 127 W:; W (119 77 167 w w
Z4 15 030 CAN (cancel) 56 38 070 8 8 g8 58 130 &«#88; X (120 78 170 x x
25 19 031 EM (end of medium) 57 39 071 &«#57; 9 g9 59 131 Y ¥ (121 79 171 &#l21:; ¥
Z6 1& 032 5UE (substitute) 58 3A 072 : : 90 5A 132 &«#90; I (122 7A 172 &#l22; 2
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 133 «#91; [(123 7B 173 { {
Z8 1C 034 F5 (file separator) 60 3C 074 < < 92 5C 134 \ % (124 7C 174 | |
29 1D 035 G5 (group separator) 61 3D 075 s#61; = 93 5D 135] 1 |125 7D 175 } }
30 1E 036 RS (record separator) 62 3E 076 > > 94 5E 136 «#594; ~ |126 TE 176 &#l26; ~
31 1F 037 US (unit separator) 63 3F 077 ? 7 95 5F 137 _ 127 7F 177 s#127; LEL

50;‘:8 : www.LookupTables .com

Figure 3: ASCII table for conversion of characters in values

Test example:

Input: aBc2011u'#:
Output: BBBZZZZSSSSC

(u — space; < — enter)

Aufgabe 2.2: Cesar-Code

The roman commander Gaius Julius Cesar used for secret communication the
following code. Every character in the text was shifted circular by n places and
replaced with the resulting character in the alphabet (see example below). To
recreate the original text, the procedure has to be reversed character-wise.

Write a program which receives characters from the UART. The program
shall send back every received upper character as the by n shifted upper char-
acter and every received lower character as the by n shifted upper character.
Every received digit should send back as the by n shifted digit. All other char-
acters shall be returned without shifting. The value of n will be adjusted by
the switches on the developing board. Before every loop of conversion the value
should be read with

n = XGpio_mReadReg (XPAR_AUSGABESCHNITTSTELLE_BASEADDR) ;

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 7

Test example for n = 2:

Input: 98 is quite big
Output: 10 ku swkvg dki

Additional question:

e Which values of n encodes every digits and characters?

Aufgabe 2.3: Riddle

From a character sequence the character with the biggest an the character with
the lowest value shall be returned. Loops are not allowed, aside from the given
infinite loop. The character analysis shall be restarted with every new line.
Every received character should be returned to the terminal for visualisation.
After »Enter« an extra line with the value of the biggest and the lowest value
shall be inserted and sended to the terminal:

B:G L:K\n’

(G — replaced by the biggest character; K — replaced by the lowest character).
Characters with value less than 0x20 or greater than 0x7E will be ignored.

Test example (monitor output on the PC):

1a3£56y

B:y L:1

HallouWelt

B:t L:u
In the first line »y« has the biggest character value of 0x74 and »1« the lowest
character value of 0x31. In the second line »t« has the biggest and the not
pictured space character has the lowest character value.

3 Loops

C has two loop types. The for-loop is a counting loop. The loop begins with
for followed by three entries in brackets separated by semicolons. The » start-
value« is a place holder for one or more statements before the loop, usually they
are for initialisation of the loop counter. The »iterationcondition« is a logical
statement, if it is false the loop will be left. The »inkrement« is a place holder
for one or more statements in the loop body, usually statements to increment
the loop counter. After this three entries followes the (other) statements of the
loop body:

for ([startvaluel; [iterationcondition]; [increment])

{
{statement;}

}

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 8

The universal loop is the while loop. It starts with the keyword while followed
by the iterationcondition in brackets and the statement sequence of the loop
body:

[startvalue;]
while (iterationcondition)
{
{statement;}
[increment;]

}

If the iterationcondition is true, the statement sequence in the loop body is
repeated. With the assignment of an initial value before the loop body and
an increment statement for the loop counter in the loop body, a counting loop
can be reproduced. The already used infinite loop has the iterationcondition
»1« (always true), that means there is no termination of the loop. For loop
bodies exists two additional control flow statements in combination with case
distinctions :

if (condition) break;
terminates the loop in case the condition is »true« and
if (condition) continue;

ends the current loop execution if the condition is »true« and jumps to the next
cycle.

Aufgabe 2.4: Character stream formatting

Write a character stream formatting program using the infinite loop including a
for loop and a case distinction, which returnes all received charactersfrom 0x20
to Ox7E to the PC and inserts a line break consisting of the chracters »\n\r«
after every tenth sended character.

Test example:

Input: aBc2011u!#:absftz76ght
345

Output: aBc2011iu!'#
:absftz76g
rhf345

(u — space). The received line break will be lost, its chracter value is less than
0x20.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 9

Aufgabe 2.5: Unary value representation

The unary system is an adding system with only one symbol with ther value of
»1«. Each one will be represented through the same symbol, usually a vertical
line. After the input of a digit, a double point followed by the unary repre-
sentation of the digit value and a line break shall be returned. All other input
characters will be ignored.

Test example:

Input: 197a3
Output:

Aufgabe 2.6: Chess board output

Write a program waiting in an infinite loop on any character via UART. After
having received the character the programm shall return the following chess
board model, realised with two nested loops, to the PC:

A1 A2 A3 A4 A5 A6 A7 A8
B1 B2 B3 . B8
C1 C2 C3 R C8
D1 D2 C3

E1l

F1

G1 .
H1 H2 H3 R H8

Aufgabe 2.7: Text-value-text-conversion

Write a program, which is always waiting in an ifinite loop for three digits
received via UART. The three digits shall be returned followed by a double
point. After the formula
2
w = Z z; - 107
i=0

the numbervalue of the three received digits will be saved in the variable
unsigned short w; // unsigned, 16 Bit

The value set by the switches shall be, added to variablew. This sum shall be
converted into a character sequence with the length of 4 and returned to the
PC followed by a line break.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 10

Test example for switches representing 00100011 (0x23=35):

Input: 197480012030

Output: 197:0232
480:0515
012:0047
030:0065

Additional question:

e How may binary digits are necessary at most for representation of the
sum? Is »short unsigned« (unsigned, 16-bit) as datatyp enough in any
case?

