
Softprocessor SP2: Basic Course

C-Programming

July 7, 2011

Abstract

In the �rst softprocessor lecture an embedded computer system was

developed and tested. In this lecture small programming exercises us-

ing distinctions of cases and loops in C will be introduced respectively

refreshed.

1 Introduction

1.1 Hardware-Con�guration and Header-Files

The developed computer system from the �rst lecture consists of a MicroB-
lace processor, a dualport memory, two parallel interfaces, one serial interface
(UART) and one debug interface (�g. 1). After switching on the supply power
the bitstream of the computer system has to be transferred into the FPGA on
the development board. The C-program from the �rst lecture is the frame for
own programs in this lecture. It starts with the �inlcude� statements of the
header �les:

Clk

interface signals

50 MHz

(BTN3)
Reset

ILMB
DLMB
PLB

lokal instruction memory bus
lokal data memory bus
lokal peripherial bus

RxD
TxD

SW(0 to 7)

LD(0 to 7)

terminal program
desktop PC

JTAG (seriell test- and
programming bus)

microblaze 0

dualport memory
(8 kByte)

ILMB DLMB

UART

(Prozessor)

IMem Controller DMem Controller

programmable
logic circuit
with the

computer system

output interface

input interface

debug interface

Figure 1: Developed computer system from the �rst lecture

1

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 2

#include "xparameters.h"

#include "xgpio_l.h"

#include "xuartlite_l.h"

The �le �xparameters.h� contains the hardware-con�guration parameters and
the other two �les the parameters for basic read- and write-functions.

1.2 Main program

The main program for the next exercises is the given program of the �rst exercise
with minor improvements.

char z;

...

putchar(z); // send character

z = getchar(); // receive character

After the include-statements the following macros are de�ned1:

#define putchar(c) \

XUartLite_SendByte(XPAR_UART_BASEADDR, c)

#define getchar() \

XUartLite_RecvByte(XPAR_UART_BASEADDR)

(\ � character for continuation of a macro de�nition in the next line). The
main program �main�, which starts after �run� or pressing the reset-button
�BTN3�, de�nes at begin the string �Hallo Welt\r\n� as constant, a pointer
variable �str�, pointing on the beginning of the string and an 8 bit variable for
saving one character:

int main()

{

char *str = "Hallo Welt\r\n";

char data;

In the following loop, to send the string, the function to send single characters
should be replaced with the earlier de�ned macro �putchar(...)�:

while (*str != 0)

{

putchar(*str);

str++;

}

The statement �*str� describes the value at the memory address of �str�. The
statement �str++� is shifting the pointer one character ahead. In the following
in�nite loop every time when a byte from the UART is received it will be shown
on the LEDs and sent back to the PC. Also the byte-value of the switches will
be read and sent to the PC.

1A macro de�nition describes an intelligent textsubstitution, the preprocessor � a program

for preconditioning the program before compiling � replaces the function call after �#de�ne�

with the following function call.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 3

while (1)

{ // ------------ body of the loop-------------------

data = getchar();

XGpio_mWriteReg(XPAR_AUSGABESCHNITTSTELLE_BASEADDR, 0, data);

putchar(data);

data = XGpio_mReadReg(XPAR_AUSGABESCHNITTSTELLE_BASEADDR);

putchar(data);

// ---

}

}

In the next excercises of this course the string which was sent to the PC in the
�rst loop will be replaced with �excercise i.j� (i.j � excercise number) and the
loop body of the in�nite loop will be replaced by the programm, which should
be developed.

1.3 Preparation for a new project

Copy the SDK subfolder from the previous exercise in the project directory for
the second exercise:

• Change to the �soft processor� directory

• mkdir Aufg2

• cp - r Aufg1/SDK Aufg2/SDK

Start the program SDK via the menu:

• �Anwendungen� . �Umgebung� . �Xilinx Platformstudio (SDK)�

go to the subdirectory �Aufg2/SDK/SDK_workspace�. In the workspace make
a new softwareproject for every exercise:

• �File� . �New� . �Manages Make C ...� . Project Name: �Aufg_....�

Make a new program �le �main.c� in the new project folder:

• �File� . �New� . �Source File� . Folder: �Aufg_...�, File: �main_2_1.c�

(..._2_1. � Number of practical course and exercise). Copy the content from
the project �Introduction� to the �le �Test1.c� and modify it. Figure 2 shows
the result of the preparation steps for the �rst programming exercise. Before
it is possible to test the self developed program with �Run� or �Debug� the
supply power have to be connected to the developing board and the bitstream
with the hardware description has to be loaded into the FPGA:

• �Tools� . �Programm FPGA� . �Save and Program�

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 4

Figure 2: Project preparation of the �rst programming exercise

2 Case distinctions

Case distinctions are control �ow statements to describe a conditional execution
of statements. Only the if-statement will be considered here.

The following describtions of program constructs lean on BNF (Bakus-Naur-
Form). Keywords will be bold printed and placeholder, which have to be re-
placed with program lines after some rules, will be printed in italic. Strings in
[...] can be there one or none time, while strings in {...} can be there many-
times. The if-statement if is followed by a condition in brackets, a sequence
of statements executed if the condition is true. Each statement is closed ba a
semicolon. A sequence of some statements has to be in {...}:

if (condition) {

{statement;}
}

{else if (condition) {

{statement;}
}

}
[else{
{condition;}
}]

After the if-branch can as many as needed else-if-branches follow which will be
executed if the own condition is true and none of the if-conditions before is true.
At the end there could be an else-branch, then the following statements will be
executed if none of the if-conditions is true.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 5

The condition � one expression with a number value � is - true - if the value
not equals zero, and - false - if the value is zero :

equal unequal less less or equal greater greater or equal

== != < <= > >=

The comparison results have the value range false� for 0 and 1 for �true�. The
combination of comparison results is handled via logical operations:

negation AND OR

! && ||

The logic expression
((a < b) ∨ (b ≥ 5)) ∧ (d = 3)

is written in C as:

((a<b || b>=5) && d==3)

In the next example two counters �CtA� und �CtB� as unsigned integer and
�s� as character are de�ned. If the value of �s� is the characer �a� the �rst
counter should increase, if it is �b� the second counter should increase:

int CtA, CtB;

char s;

...

if (s=='a') CtA++;

else if (s=='b') CtB++;

The statement 'a' stands for the character value �a�, it is 0x61, and the state-
ment �CtA++� increases the counter value by one. The {...} around the se-
quences of the if- and else-if-branch are not necessary here, because both se-
quences consists of only one statement. Figure 3 shows the ASCII table again,
it is needed for the exercises.

Aufgabe 2.1: String classi�cation

In every pass of the in�nite loop a character from the PC via UART should be
read and class�ed after the table below. The result � a character � shall be send
back to the PC.

Inputcharacter Outputcharacter

Digit ('0', ..., '9') 'Z'
Alphabetic character ('a', ..., 'z', 'A', ..., 'Z' 'B'
Control character with a character value less than 32
(hexadecimal 0x20) or greater than 126 (hexadecimal
0x7E)

'C'

all other characters 'S'

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 6

Figure 3: ASCII table for conversion of characters in values

Test example:

Input: aBc2011t!#:←↩

Output: BBBZZZZSSSSC

(t � space; ←↩ � enter)

Aufgabe 2.2: Cesar-Code

The roman commander Gaius Julius Cesar used for secret communication the
following code. Every character in the text was shifted circular by n places and
replaced with the resulting character in the alphabet (see example below). To
recreate the original text, the procedure has to be reversed character-wise.

Write a program which receives characters from the UART. The program
shall send back every received upper character as the by n shifted upper char-
acter and every received lower character as the by n shifted upper character.
Every received digit should send back as the by n shifted digit. All other char-
acters shall be returned without shifting. The value of n will be adjusted by
the switches on the developing board. Before every loop of conversion the value
should be read with

n = XGpio_mReadReg(XPAR_AUSGABESCHNITTSTELLE_BASEADDR);

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 7

Test example for n = 2:

Input: 98 is quite big

Output: 10 ku swkvg dki

Additional question:

• Which values of n encodes every digits and characters?

Aufgabe 2.3: Riddle

From a character sequence the character with the biggest an the character with
the lowest value shall be returned. Loops are not allowed, aside from the given
in�nite loop. The character analysis shall be restarted with every new line.
Every received character should be returned to the terminal for visualisation.
After �Enter� an extra line with the value of the biggest and the lowest value
shall be inserted and sended to the terminal:

B:G L:K\n'

(G � replaced by the biggest character; K � replaced by the lowest character).
Characters with value less than 0x20 or greater than 0x7E will be ignored.

Test example (monitor output on the PC):

1a3f56y

B:y L:1

HallotWelt
B:t L:t

In the �rst line �y� has the biggest character value of 0x74 and �1� the lowest
character value of 0x31. In the second line �t� has the biggest and the not
pictured space character has the lowest character value.

3 Loops

C has two loop types. The for-loop is a counting loop. The loop begins with
for followed by three entries in brackets separated by semicolons. The �start-
value� is a place holder for one or more statements before the loop, usually they
are for initialisation of the loop counter. The �iterationcondition� is a logical
statement, if it is false the loop will be left. The �inkrement� is a place holder
for one or more statements in the loop body, usually statements to increment
the loop counter. After this three entries followes the (other) statements of the
loop body:

for ([startvalue]; [iterationcondition]; [increment])

{

{statement;}
}

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 8

The universal loop is the while loop. It starts with the keyword while followed
by the iterationcondition in brackets and the statement sequence of the loop
body:

[startvalue;]

while (iterationcondition)

{

{statement;}
[increment;]

}

If the iterationcondition is true, the statement sequence in the loop body is
repeated. With the assignment of an initial value before the loop body and
an increment statement for the loop counter in the loop body, a counting loop
can be reproduced. The already used in�nite loop has the iterationcondition
�1� (always true), that means there is no termination of the loop. For loop
bodies exists two additional control �ow statements in combination with case
distinctions :

if (condition) break;

terminates the loop in case the condition is �true� and

if (condition) continue;

ends the current loop execution if the condition is �true� and jumps to the next
cycle.

Aufgabe 2.4: Character stream formatting

Write a character stream formatting program using the in�nite loop including a
for loop and a case distinction, which returnes all received charactersfrom 0x20
to 0x7E to the PC and inserts a line break consisting of the chracters �\n\r�
after every tenth sended character.

Test example:

Input: aBc2011t!#:absftz76ghf

345

Output: aBc2011t!#

:absftz76g

rhf345

(t � space). The received line break will be lost, its chracter value is less than
0x20.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 9

Aufgabe 2.5: Unary value representation

The unary system is an adding system with only one symbol with ther value of
�1�. Each one will be represented through the same symbol, usually a vertical
line. After the input of a digit, a double point followed by the unary repre-
sentation of the digit value and a line break shall be returned. All other input
characters will be ignored.

Test example:

Input: 197a3

Output: 1:|

9:|||||||||

7:|||||||

3:|||

Aufgabe 2.6: Chess board output

Write a program waiting in an in�nite loop on any character via UART. After
having received the character the programm shall return the following chess
board model, realised with two nested loops, to the PC:

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 ... B8

C1 C2 C3 ... C8

D1 D2 C3 .

E1

F1 .

G1 .

H1 H2 H3 ... H8

Aufgabe 2.7: Text-value-text-conversion

Write a program, which is always waiting in an i�nite loop for three digits
received via UART. The three digits shall be returned followed by a double
point. After the formula

w =

2∑
i=0

zi · 10i

the numbervalue of the three received digits will be saved in the variable

unsigned short w; // unsigned, 16 Bit

The value set by the switches shall be, added to variablew. This sum shall be
converted into a character sequence with the length of 4 and returned to the
PC followed by a line break.

Prof. G. Kemnitz, Dr. C. Giesemann: Soft Processor 10

Test example for switches representing 00100011 (0x23=35):

Input: 197480012030

Output: 197:0232

480:0515

012:0047

030:0065

Additional question:

• How may binary digits are necessary at most for representation of the
sum? Is �short unsigned� (unsigned, 16-bit) as datatyp enough in any
case?

