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Abstract

A linear automaton is a simple sequential circuit to produce a periodic pseudo-random
bit sequence and is in this exercise the device under test. The produced bit sequence should
first be calculated by simulation, in a second task recorded by an external logic analyzer and
in a third task be recorded by the integrated logic analyzer »ChipScope«. Results will be
displayed and compared.

1 Linear feedback shift registers
A shift register is a chain of edge triggered flip-flops, in which each successor flip-flop takes the
value of its predecessor. With each active clock edge the stored bit vector moves one step along.
At the begin one bit is added and at the end one bit gets lost.
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Figure 1: Shift register

A linear feedback shift register (LFSR) is a shift register, in which in addition the output
value of the last bit is added modulo-2 to selected bit positions. A modulo-2 addition adds two
bits without calculating the carry and is realized by an EXOR gate. The special feature of a
linear feedback shift register is that it, starting with an initial value unequal zero, traverses a state
sequence with a strong similarity to a random sequence (figure 2).
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Figure 2: 4-bit linear feedback shift register
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To produce pseudo random sequences primitive feedback shift register are preferred. A prim-
itive feedback shift register is a linear feedback shift register with a maximum state sequence of
the length

Z = 2r − 1

(r – length of the shift register). This sequence contains all states except the »all zero state«. The
zero state is always its own successor. The 4-bit linear feedback shift register in figure 2 has e.g.
the cycle length

Z = 24 − 1 = 15

and so a primitive feedback. Figure 3 a shows an 8-bit primitive feedback shift register and figure
3 b possible feedback’s for other register lengths.
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Figure 3: a) 8-bit primitive feedback shift register b) Feedback positions of primitive feedback’s
for other register lengths

The circuit of a feedback shift register has a clock and an initialization input and the register
state, a bit-vector of size r, as output. The bit-vector with the feedback positions (bits with
feedback’s are »1« and the others »0«) should be a parameter of the entity of the design unit :

entity LFSR is
generic (
RK: std_logic_vector:="0010");

port (T, I: in std_logic;
s: out std_logic_vector(RK’length-1 downto 0));

end entity;

With the default value »0010« the 4-bit register in figure 2 is described. To instantiate the 8-bit
register in figure 3 a the default value of the parameter RK has to be overwritten by:

... generic map(RK => "01100010") ...

To sample the initialization signal an internal signal has to be declared. The sampling itself is
described in a sampling process, assigning on each rising clock edge the value of the asynchronous
external initialization signal to the internal initialization signal:

architecture a of LFSR is
signal I_del: std_logic;
signal z: std_logic_vector(RK’length-1 downto 0);

begin
process(T)
begin
if rising_edge(T) then I_del <= I; end if;

end process;
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The function of the LFSR is described in a process with the internal initialization signal and the
clock in the sensitivity list. If the initialization signal is »1«, the initialization state »all ones« and
else, if there is a rising clock edge the current state rotated by one position is assigned to the state
signal. If the leading bit of the current register state is one in addition the feedback vector RK is
added bit-wise modulo-2. The assignment of the state signal to the output signal is described by
the final concurrent signal assignment:

process(I_del, T)
begin
if I_del=’1’ then
z <= (others =>’1’);

elsif rising_edge(T) then
if z(z’high)=’0’ then
z <= z(z’high-1 downto 0) & z(z’high);

else
z <= (z(z’high-1 downto 0) & z(z’high)) xor RK;

end if;
end if;

end process;
s <= z;

end architecture;

2 Simulation
The simulation requires a testbench, containing the linear feedback shift register as an instance
and to produce the input signal T and I. For this, a constant for the clock period and signals
for the interface of the DUT are declared. In the following example the default value for the
parameter RK is kept. It means that the device under Test is the feedback shift register in figure
2:

constant tP: delay_length := 20 ns;
signal I, T: std_logic;
signal y: std_logic_vector(3 downto 0);
...
DUT: entity work.LFSR port map(T=>T, I=>I, s=>y);

The following test process produces at the begin of the simulation an initialization pulse with a
duration of 2,7 · tP and a clock signal witch toggles always after tP/2 from »0« to »1« and vice
versa. After a total of 0,5 µs simulation time, simulation stops with a wait statement without
wake-up condition.

test: process
begin
T<=’0’; I<=’1’, ’0’ after 2.7*tP;
loop
wait for tP/2; T <= not T;
if now > 0.5 us then wait; end if;

end loop;
end process;

The description of the device under test, the testbench, a shell script withe command sequence for
the simulation with GHDL and GTKWAVE and a sav-file are given. As in the exercise before, the
corresponding archive, here »PrVHDL-A2.zip« has to be unpacked in the working directory of the
laboratory course. Also the other steps to carry out the simulation and visualize the simulation
results are the same as in the exercise before.
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2.1 Synthesis with ISE
The circuit description »LFSR.vhdl« is already fit for synthesis1. To improve testability, the
LFSR should be embedded in the enclosing circuit in figure 4 a. As primary clock the 50 MHz
clock »GCLK0« produced by the external oscillator at the bottom of the test board should be
used. The switch »SW0« is used to select between a fast clock with half of the frequency of the
primary clock and a slow clock with a frequency of approximately 1 Hz (Frequency of the primary
clock divided by 227). A clock signal must reach all memory cells almost simultaneously. For this,
the programmable logic circuit has special clock nets, which are driven by »BUFG« driver. In
the VHDL description after the clock divider the BUFG driver has to be inserted manually2. The
initialization signal is produced by »BTN0«. The output signal of the feedback shift register is
connected first to the LEDs and second to the expansion connector A2 (opposite to the switches).
The expansion connector is to mount the external logic analyzer to those outputs (figure 4).
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Figure 4: a) Enclosing circuit of the LFSR b) Assignment of the inputs of the logic analyzer
extension connector A2

The interface of the enclosing circuit is:

entity Gesamtschaltung is
port(GCLK0, SW0, BTN0: in std_logic;

LD, LA: out std_logic_vector(7 downto 0));
end entity;

(Gesammtschaltung – German word for whole circuit). In the architecture description signals has
to be declared for the branching output signal and the down scaled clock before and after the
»BUFG«. The clock divider is a process that counts up the rising edges of the input clock in a
variable. If switch setting is »SW0=0« the generated clock is inverted with every and else with
every 25.000.000th rising edge of the input clock.

architecture a of Gesamtschaltung is
signal y: std_logic_vector(7 downto 0);
signal T, TBufG: std_logic:=’0’;

begin
ClkDiv: process(GCLK0)

1It does not contain delay times, output of text messages or other statements not supported by synthesis.
2In later designs with internal clock dividers always feed the internally generated clocks via »BUFG« driver into

the clock net. Otherwise clock skews may cause difficult to locate malfunctions.
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variable Ct: natural range 0 to 25000000;
begin
Ct := Ct + 1;
if Ct = Ct’high then
T <= not T;

end if;
end process;

An important detail in the description of the clock divider is, that the down scaled output clock
is declared as a bit signal and signal assignments to it are done in a sampling process. This
guarantees that the clock will be taken from the output of a flip-flop which minimizes the clock
skew and avoids glitches. This detail also should be adopted in all later designs with a clock
divider. The »BUFG« driver – a basic design component – is instantiated as an component. The
component declaration is in the package »UNISIM.VComponents«, that has to be imported at
the begin of the design file:3

clock_driver: BUFG port map(I=>T, O=>TBufG);

The device under test is here the 4-bit shift register if figure 2. The output signal is correspondingly
4 bit wide. It is connected to the lower output bits and the internal clock to the highest output
bit. The rest of the output bits are set to zero.

DUT: entity work.LFSR port map(T=>TBufG, I=>BTN0, s=>y(3 downto 0));
y(7 downto 4) <= T & "000";
LD <= y;
LA <= y;

end architecture;

Die VHDL file the whole circuit and the project file are given and unpacked from the archive to the
directory »Aufg2/ISE«. The constraint file »Aufg2.ucf_« is incomplete and has to be renamed
before the start of »ISE« . to »Aufg2.ucf«. To the rest of the circuit connectors the package
pin assignments has to be added as shown in figure 4 a. After starting »ISE« change to directory
»Aufg2/ISE«, open the project »Aufg2«, synthesize and download the design in the programmable
circuit as described in the first lecture.

2.2 Test
To test the circuit via the LEDs »SW0« has to be switched to »0« (1Hz clock). Pushing the
button »BTN0« the four low-order LEDs must turn on and »LD7« must blink with the clock.
After releasing the reset button the low-order LEDs must display cyclic the generated pseudo
random sequence.

2.3 Logic analysis
Switching to the fast clock, the circuit runs so fast that only a steady glowing of the LEDs will be
displayed. A logic analyzer is a device that records logical data streams at its inputs with a high
speed. Our logic analyzer has to be mounted to the expansion connector as displayed in figure 4 b.

2.3.1 Configuring the logic analyzer

Before testing the logic analyzer has to be configured via an xml-file. The sample rate describes the
number of recorded sample values per second. Valid values are the numbers from 1 to 150.000.000
and 600.000.000. For the test with the fast clock 600 million samples per second are a reasonable
value:

3The template of a component declaration can be found under »Edit« . »Language« . »Templates« . »VHDL«
. »Device Primitive Instantiation« . »FPGA« . »Clock Components« . »Clock Buffers«.
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<la>
<samplerate>600000000</samplerate>

The used logic analyzer always logs 4048 sample values. So the whole recording time is:

tAufzeichnung =
4048

600.000.000 s−1
≈ 6,7µs

With 25 clocks per microsecond nearly 170 clock period are recorded. To record the desired time
interval the trigger and pre-trigger parameters have to be adjusted in an appropriate way. The
trigger describes a signal condition, to which the recording window will be aligned. The trigger
consists of two auxiliary variables »A« and »B«, each an AND term of bit conditions. Possible
bit conditions are the values »0« and »1« or the rising or the falling edge. The whole trigger can
be the term »A=1«, »B=1«, »A∨B=1« etc. In the following example the trigger condition is
»A=1«, where »A« is the AND term of the conditions »1 at input 0« and »0 at input 1 to 3« (for
more Details refer to the short reference of the USB-LOGI-500 at the web site4 ):

<trigger when="A">
<A>
<ch when="high">0</ch>
<ch when="low" >1</ch>
<ch when="low" >2</ch>
<ch when="low" >3</ch>

</A>
</trigger>

</la>

The pre-trigger describes the fraction of the waveform displayed before the input signal matches
the trigger condition (figure 5). Valid values are 1 to 7 for 1/8 to 7/8 of the displayed time before
the trigger event. In the example it is set to »1« for 1/8:

<pretrigger>1</pretrigger>

After starting the logic analyzer waits until it has recorded enough pre-trigger values. Than it
continues filling the recording memory circularly until the signal matches the trigger condition.
Finaly it records the required post trigger values and returns with the recorded data (see next
subsection).

The signal definition defines the names and channel numbers of the signals to be recorded.
Signal vectors combine multiple channels, as in the following the signal vector »y« the channels
»0« to »3«:

<signals>
<signal name="Takt">
<ch>2</ch>

</signal>
<signal name="y">
<ch>0</ch>
<ch>1</ch>
<ch>2</ch>
<ch>3</ch>

</signal>
</signals>

The channel numbers are printed on the housing of the logic analyzer and on the insulating tubes
of the wires.

4still to be translated into English
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2.3.2 Recording and displaying

The configuration file of the subsection before will be unpacked from the zip-file in the directory
»Aufg2/LA« and is named »ConfigLA_Aufg2.xml«. For the experiment

• start a terminal

• change to this directory

• select on the test board by »SW0=1« the fast clock and

• start recording with

usb-logi ConfigLA_Aufg2.xml

The command creates after finishing recording a lxt- and a sav-file and starts GRKWAVE with
both files to display the recorded waveform. Figure 5 shows the result with the described settings.
To repeat the recording with the slow clock switch to »SW0=0«, reduce the sample rate to 100
per second and start recording again.

recorded values after the
trigger event

y = 0001
trigger condition

pre-trigger values

Figure 5: Displayed waveforms with the fast clock and the described settings

3 Chip-Scope
Alternatively to the external logic analyzer the logic analyzer also can be programmed into the
FPGA. To generate a logic analyzer circuit the design system »ISE« has a circuit generator asking
for a parameter description and producing all necessary design files. In the following example the
recording clock of the integrated logic analyzer (ILA) should be the 50 MHz input clock »GCLK«.
The logic analyzer should have five date inputs to record the state z of the feedback shift register
and the down-scaled clock T . The sampling point should be the rising edge of »GCLK«. All five
signal bits should be used for trigger. The simplest trigger condition – matching with given values
– is sufficient (figure 6). The integrated logic analyzer is controlled via the programming cable by
the program »Chip-Scope« running on the PC.

To configure the integrated logic analyzer in »ISE« in »Sources for Implementation« a new
design object of the type »Chip-Scope Configuration file« has to be created:

• »New Source« . file name: »Chip-Scope«, Source Type: »Chip Scope Definition and Con-
nection File«

• »Next« . »associated to Gesamtschaltung« . »Next« . »Finish«

Open the new source »Chip-Scope.cdc« with a mouse click. In the window that opens in »Trigger
Parameters« select for the number of inputs »5«, »Match Type Basic«, one »Match Unit«, no
counter and no »Trigger Sequencer«. Left side, in the window »Core Utilization« the required
hardware is displayed in terms of look-up tables, flip-flops and block RAMs (figure 7). Each
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Figure 6: Test of the example circuit with the integrated logic analyzer

expansion of the trigger functionality costs additional hardware, that is not available for the
device under test. In our example the circuits is almost empty, so resources for complex trigger
condition as multiple match units etc. could be added, but will not be used.

Figure 7: Trigger parameters for the integrated logic analyzer

In the menu »Capture Parameters« select for the depth of the recording memory 1024, for the
data channels to be recorded »Data Same As Trigger« and for the record clock edge »Rising«. In
the menu »Net Connections« open with »Modify Connections« the menu to assign signals of the
device under test to inputs of the logic analyzer. The recording clock should be the 50MHz input
clock. However, within the programmable circuit only the output signal of the automatically
inserted clock driver »GCLK_BUFGP« is available (figure 8 a). To the data inputs has to be
assigned, as shown in figure 6, the bisect clock T and the four state bits of the linear feedback
shift register (figure 8 b).

Complete the editing of the chip scope configuration parameters:

• »OK« . »Return to Project Navigator«

After this, select in the window »Sources for Implementation« the »Gesammtschaltung« and start
in the tool window »Analyze Design Using Chips-Scope«. This command starts the synthesis of
the complete circuit including the integrated logic analyzer, followed by placement, routing etc.
up to the launch of the program »Chip-Scope«. This program downloads the configuration file
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Figure 8: a) Assignment of the recording clock b) Assignment of the data signals to be recorded

into the programmable circuit and allows to select trigger values, start recording, get date back
to the PC and display the recorded data.

After opening of the window »Chip-Scope Pro Analyzer«

• connect the test board (if it is still not done) to the power supply and the programming
cable

• click on the chain symbol at the top left in the window to connect to the programming cable5

After connecting successfully, the detected circuits on the test bus are displayed (figure 9 top left).
To the first circuit in the chain »Dev:0« the generated bit-file has to be assigned. Hereupon the
circuit will be programmed and in the object space the integrated logic analyzer (ILA) will be
displayed.

Figure 9: Adjustments in Chip-Scope
5The error message »Cable is locked ...« says that another program has locked the cable driver and still not

released it. In the current version Chip-Scope has the bug not to delete the lock entry after closing. Until a better
workaround is found in this situation only a restart of Linux solves the problem.
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Open both sub-windows at the right side in figure 10 »Trigger Setup« and »Waveform« with
a right mouse click and »Open ...« to it’s name in the object window. Before starting recording,
trigger and pre-trigger value (position) has to be selected In figure 10 the trigger event is the first
occurrence of T = 1 and z = ”0010” after start and recording of the 100 pre-trigger samples.
Recording is started with a right click on the triangle in the top menu bar.

Figure 10: Recording adjustments und simulation result of the test with the high clock speed

4 Exercises
The aim of this lecture first of all is to learn to use the different techniques of testing and trou-
bleshooting. For testing and troubleshooting are the most time consuming tasks in hardware
design as also in software design.

1. Run the simulation, the test with the external logic analyzer and the test with the integrated
logic analyzer with the original example circuit. Use the example files of the zip-file on the
web-site.

2. Modify the example circuit to a 5 or 6 bit feedback shift register with self selected feedback
points and draw this LFSR on the handout sheet for exercice 2.

3. Simulate the modified circuit. Determine the cycle length of the state sequence from the
initial state until the initial state is reached again. Write the result on the handout sheet
and keep the ghw- und sav-file for the final checking by the supervisor.

4. Synthesize the modified circuit and try to get the same results with the logic analyzer as with
the simulation. For this also the constraint file for synthesis and the configuration file for
the logic analyzer has to be adapted. Keep also this ghw- und sav-file for the final checking.

5. Adapt the integrated logic analyzer to the modified circuit and repeat the test with it. Write
the modifications on the handout sheet and keep a screen shoot of the trigger setup and the
recorded waveform for the final checking.

Suggestion (not obligatory):

• Do additional experiments with different trigger and pre-trigger values both with the external
and the integrated logic analyzer.

• Check as in the first exercise with
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– »Synthesis XST« . »View RTL Schematic«

the synthesis result and with

– »Place & Route« . »Analyze Timing / Floorplan Design ...«

the automatic generated placement.

• Run a post-route simulation with the modified feedback shift register and compare the
calculated output waveforms with those recorded by the external logic analyzer.

5 Questions for self-monitoring
• Which initial states are allowed for a primitive feedback shift register so that it cycles after

initialization through 2r − 1 states?

• What frequency has a clock with a period of 20 ns?

• The external logic analyzer records 600 million and the integrated logic analyzer 50 million
samples per second. How often each period of the 25 MHz clock is sampled in both cases?
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