
Lecture 1: Design, Simulation and Test of a Combinational
Circuit

G. Kemnitz∗, TU Clausthal, Institute of Computer Science

May 25, 2011

Abstract

A combinatorial circuit of a few gates will be simulated, described for synthesis, synthesized
and loaded in a programmable logical circuit. The educational object is to become familiar
with the different kinds descriptions and tools in the design process of combinatorial circuits.

1 Preparation
Download the achieve »PrVHDL-A1.zip« in the working directory of the laboratory course. Then
unpack:

unzip PrVHDL-A1.zip

The archive contains the following files:

Aufg1/Sim_GHDL/Exor2_Sim.vhdl # description for simulation
Aufg1/Sim_GHDL/Exor2_Synth.vhdl # description for synthesis
Aufg1/Sim_GHDL/Test_Exor2.vhdl # testbench
Aufg1/Sim_GHDL/Test_Exor2.sav # visualization parameters for GTKWAVE
Aufg1/Sim_GHDL/Exor2.sh # batch file for simulation
Aufg1/Exor2/Exor2.xise # project file for ISE
Aufg1/Exor2/Exor2.ucf # constraint file for ISE

2 Simulation with GHDL and GTKWAVE
The example is the following circuit with two EXOR gates, described with hold and delay times:

td = 5ns
th = 3ns=1 =1

z
y

c
b
a

th, td th, td

The description consists of two concurrent signal assignments, which invalidate the signal at the
right side of the assign operator »<=« after the hold time and assign a new valid value after the
delay time:

z <= ’X’ after 3 ns, a xor b after 5 ns;
y <= ’X’ after 3 ns, z xor c after 5 ns;

∗Tel. 05323/727116

1

The complete description is in the file »Aufg1/Sim_GHDL/Exor2_Sim.vhdl«. In addition the
simulation needs the testbench »Aufg1/Sim_GHDL/Test_Exor2.vhdl«, instantiate the device
under test (DUT) and creating the input signals:

DUT: entity work.Exor2 port map(a=>x(0), b=>x(1), c=>x(2));
Test: process
begin
wait for 20 ns; x <= "000"; wait for 20 ns; x <= "010";
wait for 20 ns; x <= "110"; wait for 20 ns; x <= "111";
wait for 20 ns; x <= "100"; wait for 20 ns; x <= "101";
wait for 20 ns; x <= "001"; wait;

end process;

The instance of the device under test has no architecture name. This is a precondition to use the
same testbench later in the design process in »ISE« for post-route simulation1. The test process
assigns always after 20 ns a new value to the input signal and stops simulation with the last wait
statement after collectively 140 ns simulation time. Simulation under Linux:

• Menu »Anwendungen« . »Zubehör« . »Terminal« starts a terminal,

• change to directory »Aufg1/Sim_GHDL«

cd Aufg1/Sim_GHDL

• execute the commands in the shell script »Exor2.sh:

ghdl -a EXOR2_Sim.vhdl # analyze DUT description
ghdl -a Test_Exor2.vhdl # analyze test bench
ghdl -m Test_Exor2 # make (produce the executable)
ghdl -r Test_Exor2 --wave=Test_Exor2.ghw # run simulation
gtkwave Test_Exor2.ghw Test_Exor2.sav # visualize wave form

After starting GTKWAVE select via the menus and icons of the waveform viewer the signals and
the time interval to be displayed. Figure 1 shows the waveform with the adjustments in the file
»Aufg1/Sim_GHDL/Test_Exor2.sav«.

Figure 1: Simulation result

Instead of typing in the single commands by the keyboard they also can be copied into the terminal
with »Strg-C« and »Strg-V« or executed by running the shell script:

./Exor2.sh
1An instance without architecture name instantiate the last analyzed architecture to the entity in the library.

2

2.1 Circuit design with ISE
For synthesis the target function has to be described without invalidation of signal values, without
printing text messages and without hold and delay times. Both signal assignments must be
simplified to:

z <= a xor b;
y <= z xor c;

(see synthesis description »Aufg1/Sim_GHDL/Exor2_Synth.vhdl«). To simulate the simplified
behavioral description in the shell script »Exor2.sh« the file name »Exor2_Sim.vhdl« has to be
changed to »Exor2_Synth.vhdl.

Start »ISE«

• menu: »Anwendungen« . »Umgebung« . »Xilinx ISE 11«

In the opening project navigator

• »File« . »Open Project«

• change to directory: »Aufg1/Exor2« and

• select the file »Exor2.xise«.

In the window »Sources for Implementation« should be displayed the programmable logic circuit
»xc3s1000-4ft256«, the file with the simulation description »../Sim_GHDL/Exor2_Synth.vhdl«
and the constraint file as in figure 2 a. In the process window below for the selected design object
all possible operations are displayed. For the synthesize description in the figure these are e.g. syn-
thesis, implementation and generate programming file. A double click on the programmable circuit
opens the menu shown in figure 2 b. In this menu subsequently another type of programmable
circuit, another simulator etc. can be selected. In this and in the following laboratory exercises
the values must be those shown in the figure2.

a) b)

Figure 2: a) Design sources for implementation and available operations b) Project parameters

In the first step, the register transfer synthesis should be performed:

• select the description for synthesis »Exor2_Synth.vhdl« and

• click on »Synthesize - XST« . »View RTL Schematic«

After opening and an appropriate zoom the synthesized circuit in figure 3 will be displayed, an
EXOR with three inputs.

2The adjustments are stored in the project file »Exor2.xise«.

3

Figure 3: Result of the register transfer synthesis

The next step after synthesis is the technology mapping. Start the process

• »Synthesize - XST« . »View Technology Schematic«

Our example circuit will be mapped to a single look-up table3. At all connectors buffers for signal
transformation are included. With a click at the look-up table the table contents is displayed as
shown in figure 4 below right.

Figure 4: Circuit after technology mapping and contents of the look-up table

For placement and routing the project in addition needs an user constraint file. The constraint
file contains the assignment of the circuit connectors to circuit pins and other additional infor-
mation for synthesis, placement and routing. To edit the constraint file select it in the window
»Sources for Implementation« 4 and start in the process window »User Constraints« . »Edit
Constraints (Text)«. The lines in the given constraint file

NET "a" loc="F12"; # switch SW0
NET "b" loc="G12"; # switch SW1
NET "c" loc="H14"; # switch SW2
NET "y" loc="K12"; # LED LD0

3In our programmable logic circuit combinatorial circuits are mainly mapped to look-up tables with four inputs
and one output. For a function with three inputs one of the inputs remains unused.

4no double click!

4

describe that input »a« should be connected to the package pin »F12« etc. The names of the
package pins can be found beside the switches and LEDs on Spartan3 board used for testing. To
generate the programming file the synthesis description has to be selected. Then

• start »Generate Programming File«.

To program the programmable logic circuit start

• »Configure Target Device« . »Manage Configuration Project (IMPACT)«

IMPACT is a stand alone program. Programming needs the following steps:

• connect power supply and the programming cable to the board,

• in IMPACT start »File« . »New Project«,

• answer »yes« to »Do you want the system automatically ...«,

• in the next window select »Configure device using Boundary Scan« and »Automatically
connect ...«,

• in the next window select»... assign configuration file(s)«,

• assign to the programmable logic circuit »xc3s1000« the file »Aufg1/Exor2.bit,

• leave to the flash memory »bypass« and

• close the next window.

After programming the IMPACT window should look as shown in figure 5. Boundary-Scan is a
serial test and configuration bus with the signals TDI (test data in), TDO (test data out), TCK
(test clock) and TMS (test mode select, see test connector at the board). Multiple circuits on a
board form a chain. Each circuit type has a vendor and identification number which can be read
by

• »Get Device ID«

in the window »IMPACT Processes«. Programming is to be performed in the same window with

• »Program«

After Programming, as shown in figure 5, the message »Program Succeeded« should be displayed.
After programming successfully the circuit is ready for testing.

Figure 5: Boundary-scan chain and assignments to both devices

5

2.2 Test
To test the example circuit consisting of two EXOR gates all combinations of switching values
should be set and the the output has to be checked. The output LED should only be on, if the
number of input switches, witch are on, is even.

2.3 Editing Placement
Usually, place and route is performed automatically. If required, placement can be corrected by
hand before the generation of the programming file by starting »Implement Design«→ »Analyze
Timing / Floorplan Design (PlanAhead)«. The program surface of »Plan Ahead« can besides oth-
ers display a geometrical plan of all programmable parts of the programmable circuit. Our circuit
has 1.920 programmable logic blocks, 24 configurable block RAMs, 24 multipliers, 4 configurable
clock generation devices and 391 programmable input/output circuits. With a strong zoom it
shows that all programmable logic block consist of four slices and each slice of two programmable
look-up tables with four inputs and one output, two flip-flops and some additional special purpose
gates and multiplexers5. Figure 6 shows a small part with the look-up table of the example circuit
and the driver for input »c«. In the computer generated layout the look-up table is arranged in a
way that distances to each connector are minimal. For the screen shoot it has been moved by the
mouse. In this way each sub-circuit can be rearranged.

Figure 6: Placement with PlanAhead

2.4 Run time analysis
With »Implement Design«→ »Generate Post Place and Route Static Timing« → »Analyze Post-
Place & Route Static Timing« the maximum delay times between all connectors through the
circuit are calculated and displayed:

All values displayed in nanoseconds (ns)
---------------+---------------+---------+
Source Pad |Destination Pad| Delay |
---------------+---------------+---------+
a |y | 10.073|
b |y | 10.084|
c |y | 8.615|
---------------+---------------+---------+

The cause of the smaller delay time from input »c« to the output is the replacement of the look-up
table close to input »c« in figure 6.

5e.g. for fast carry propagation

6

2.5 Simulation under ISE
In the menu »Sources for« over the left window with the design objects can be selected between
»Implementation«, »Behavioral Simulation« and »Post-Route Simulation«. With »Behavioral
Simulation« the synthesis description, e.g. the functional description without delay times, can be
simulated. After selecting »Behavioral Simulation« a testbench has to be added

• right mouse click . »Add Source«

• change to the directory »../Sim« and

• select the file »Test_Exor2.vhdl«.

The source and the process window should look afterward as shown in figure 7 left. In the source
window select »Test_Exor2« and in the process window start »Simulate Behavioral Model«. After
adapting the zoom the simulation result should look as be shown in figure 7 right.

Figure 7: Behavioral Simulation

To simulate the final synthesized, placed and routed circuit with real delay times first the
simulation model has to be calculated. To do it

• switch back to »Sources for Implementation«,

• via »Implement Design« → »Place & Route« → »Generate Post-Place and Route Simula-
tion Model« select with a right mouse click in »Process Properties« for »Simulation Model
Target« the value »VHDL«

• start the generation of the simulation model with a left mouse click on »Implement Design«
→ »Place & Route« → »Generate Post-Place and Route Simulation Model.

To make the simulation model in the source window visible switch in »Sources for« to »Post-
Route Simulation«. Figure 8 left shows the then displayed design hierarchy. The generated
VHDL-architecture has the name »Structure« and contains multiple instances of sub-circuits. The
testbench is the same as for »Behavioral Simulation«. To be able to simulate the generated post-
route model by the test bench the instance of the device under Test must not have an architecture
name. To start the simulation in the window »Sources for« the testbench has to be selected and
below in the process window »Simulate Post-Place ...« has to be started. Figure 8 shows the
simulation result after adjusting the zoom. As the figure shows, the simulation does not calculate
signal validness (waveforms with ’X’ when the signals are invalid).

3 Exercises
1. Prepare an example circuit. It should have at least three inputs and should consist at least

three gates. Draw the circuit on the handout for exercise 1 and fill in the truth table (column
manually calculated).

7

Figure 8: Post-rout simulation of the final circuit with real delay times

2. Write the simulation model with hold and delay times an a testbench with at least five
different input values, simulate the circuit and fill in the second column »Simulation« in the
truth table on the handout with the steady-state values.

3. Write a model for synthesis of the example circuit and the corresponding constraint file.
Assign the inputs to switches and the outputs to LEDs on the test board (LEDs: K12, P14
etc., switches: F12, G12 etc.).

4. Program and test the circuit by the switches and LEDs and fill in the last column in the
truth table of the handout.

Suggestion (not obligatory): Test also the other described design steps (visualization of the result
of synthesis, after technology mapping etc. until the post-route simulation with the self selected
example circuit.

4 Questions for self-monitoring
• What is the use of the libraries ieee and work?

• What is defined in the Package ieee.std_logic_1164?

• Why the the sequence of statements in the test process needs a final »Wait« without wake-up
condition?

• Why it is allowed to simulate a circuit with given hold and delay times and why hold and
delay times are forbidden in circuit descriptions for synthesis? Hint: How do you think a
digital circuit can adapt to predefined delay times? Are those techniques reasonable?)

• What do you expect will happen in case of a wrong or absent connector pin assignments in
the constraint file?

8

