
8051 Architecture Reference v5

Serial Port
Timer 1
Ext Interrupt 1
Timer 0
Ext Interrupt 0
Reset

0023H
001BH
0013H
000BH
0003H
0000H

07FFH (89C2051)

07FFFH (8051)
Address

Program Memory
(Code)

Internal Memory
(Data)

Bank Select
Bits in PSW

11 {

10 {

01 {

00 {

2FH

20H

1FH
18H
17H
10H
0FH
08H
07H
00H

RB3*

RB2*

RB1*

RB0*

Directly
Addressable

Bits 0-7F

7FH

* Four banks of Registers
 addressable as R0-R7

Reset value of
Stack Pointer

Interrupt
Vectors
(location jumped
to on Interrupt)

Program Counter:

 16 bit register restricted to 0000H -> 07FFFH

*Special Function Registers (SFR) Space:

Byte Address | Name | Description | Bits ("x" => NOT bit addressable)
 80H | P0 | Port 0 | bit addressable: P0.7 -> P0.0
 81H | SP | Stack Pointer | x
 82H | DPL | Low byte of DPTR | x
 83H | DPH | High byte of DPTR | x
 87H | PCON | Power control | x
 88H | TCON | Timer control | TF1-TR1-TF0-TR0-IE1-IT1-IE0-IT0
 89H | TMOD | Timer mode control | x
 8AH | TL0 | Timer 0 low byte | x
 8BH | TL1 | Timer 1 low byte | x
 8CH | TH0 | Timer 0 high byte | x
 8DH | TH1 | Timer 1 high byte | x
 90H | P1 | Parallel port 1 | Bit Addressable P1.7 -> P1.0
 98H | SCON | Serial control | SM0-SM1-SM2-REN-TB8-RB8-TI -RI
 99H | SBUF | Serial buffer | x
 A0H | P2 | Port 2 | Bit addressable: P2.7-P2.0
 A8H | IE | Interrupt Enable | EA - x - x -ES -ET1-EX1-ET0-EX0
 B0H | P3 | Parallel port 3 | Bit addressable: P3.7 -> P3.0
 B8H | IP | Interrupt priority | x - x - x -PS -PT1-PX1-PT0-PX0
 D0H | PSW | Program Status Word | CY -AC -F0 -RS1-RS0-OV -F1 -P
 E0H | ACC | Accumulator | ACC.7 -> ACC.0
 F0H | B | B register | B.7 -> B.0

Interrupt control register
IE: EA Global Interrupt Enable bit. Set to 0 to disable ALL interrupts
 ES Serial interrupt enable: receive interrupts (RI) or transmit (TI)
 ET0, ET1 Enable Timer0/Timer1 Interrupts (when count rolls over to zero)

<-8 bits wide ->
D7............D0

Special
Function

Registers*

I/O registers
accessed via

memory
locations

$FF
SFR ---- $80

Working space for
user programs

Timer control and mode registers - 2 timers 0 and 1

TCON: TF0/TF1 Timer overflow flag timers for Timer0/Timer1
 TR0/TR1 Timer run control bit. Set to 1 by software to enable timer ON

TMOD: mode0 - mode1 bits. 2x4-bit nibbles. Timer 1 right 4 bits, Timer 0 lower 4 bits.
 These bits are used to control how the timers behave, whether they auto-reload …
 mode = 0 13 bit timer
 mode = 1 16 bit timer
 mode = 2 8 bit auto-reload timer. THx -> TLx on overflow. Used by Serial
 I/O as bit rate (*32). THx:= OFDh gives 9600bps for 11.059Mhz clock

Serial control register

 SCON: SM0-SM1-SM2-REN should be set to 0111 for normal operation

 TI set when the character has been transmitted
 RI set when a character is received

Power control register
PCON: set to 2 will stop the processor

Addressing Modes:
Rn Register R0 - R7 of the currently selected register bank.
direct 8-bit address of a location in internal data memory.
 This could be an internal Data RAM location (0-127) or a SFR.
@Ri 8-bit Data RAM location addressed indirectly via register R0 or R1.
#data 8-bit constant included in instruction.
#data16 16-bit constant included in instruction.
addr11 11-bit destination address. Used by ACALL and AJMP.

 The branch will be within the same 2K byte page of Program Memory as the
 first byte of the following instruction.

addr16 16-bit destination address. Used by LCALL and LJMP.
 A branch can be anywhere within 2K byte Program Memory address space.
rel, relative Signed (two's complement) 8-bit offset from current PC. Range is -128 to

 +127 bytes relative to first byte of the next instruction.
 Used by SJMP and all conditional jumps (eg JZ, JNZ, JB …).

bit Direct addressed bit in internal Data RAM or SFR.

Arithmetic operations:
 | Byte | Cycle | C OV AC
ADD A,Rn | Add register to Accumulator | 1 | 1 | X X X
ADD A,direct | Add direct byte to Accumulator | 2 | 1 | X X X
ADD A,@Ri | Add indirect RAM to Accumulator | 1 | 1 | X X X
ADD A,#data | Add immediate data to Accumulator | 2 | 1 | X X X
ADDC A,Rn | Add register to Acc. with Carry | 1 | 1 | X X X
ADDC A,direct | Add direct byte to Acc. with Carry | 2 | 1 | X X X
ADDC A,@Ri | Add indirect RAM to Acc. with Carry | 1 | 1 | X X X
ADDC A,#data | Add immediate data to Acc. / Carry | 2 | 1 | X X X
SUBB A,Rn | Subtract reg. from Acc. with borrow | 1 | 1 | X X X
SUBB A,direct | Sub. direct byte from Acc. / borrow | 2 | 1 | X X X
SUBB A,@Ri | Sub. indirect RAM from Acc./ borrow | 1 | 1 | X X X
SUBB A,#data | Sub. imm. data from Acc. / borrow | 2 | 1 | X X X
INC A | Increment Accumulator | 1 | 1 |
INC Rn | Increment register | 1 | 1 |
INC direct | Increment direct byte | 2 | 1 |
INC @Ri | Increment indirect RAM | 1 | 1 |
DEC A | Decrement Accumulator | 1 | 1 |
DEC Rn | Decrement register | 1 | 1 |
DEC direct | Decrement direct byte | 2 | 1 |
DEC @Ri | Decrement indirect RAM | 1 | 1 |
INC DPTR | Increment Data Pointer | 1 | 2 |
MUL AB | Multiply A and B | 1 | 4 | 0 X
DIV AB | Divide A by B | 1 | 4 | 0 X
DA A | Decimal adjust Accumulator | 1 | 1 | X
 used for Binary Coded Decimal
 adjustment

Logical operations
 ______ | Byte_ | Cycle | C OV AC
ANL A,Rn | AND register to Accumulator | 1 | 1 |
ANL A,direct | AND direct byte to Accumulator | 2 | 1 |
ANL A,@Ri | AND indirect RAM to Accumulator | 1 | 1 |
ANL A,#data | AND immediate data to Accumulator | 2 | 1 |
ANL direct,A | AND Accumulator to direct byte | 2 | 1 |
ANL direct,#data | AND immediate data to direct byte | 3 | 2 |
ORL A,Rn | OR register to Accumulator | 1 | 1 |
ORL A,direct | OR direct byte to Accumulator | 2 | 1 |
ORL A,@Ri | OR indirect RAM to Accumulator | 1 | 1 |
ORL A,#data | OR immediate data to Accumulator | 2 | 1 |
ORL direct,A | OR Accumulator to direct byte | 2 | 1 |
ORL direct,#data | OR immediate data to direct byte | 3 | 2 |
XRL A,Rn | Exc-OR register to Accumulator | 1 | 1 |
XRL A,direct | Exc-OR direct byte to Accumulator | 2 | 2 |
XRL A,@Ri | Exc-OR indirect RAM to Accumulator | 1 | 1 |
XRL A,#data | Exc-OR immediate data to Acc. | 2 | 1 |
XRL direct,A | Exc-OR Accumulator to direct byte | 2 | 1 |
XRL direct,#data | Exc-OR imm. data to direct byte | 3 | 2 |
CLR A | Clear Accumulator | 1 | 1 |
CPL A | Complement Accumulator | 1 | 1 |
RL A | Rotate Accumulator left | 1 | 1 |
RLC A | Rotate Acc. left through Carry | 1 | 1 | X
RR A | Rotate Accumulator right | 1 | 1 |
RRC A | Rotate Acc. right through Carry | 1 | 1 | X
SWAP A | Swap upper & lower 4 bits in Acc | 1 | 1 |

Data transfer
 | Byte | Cycle | C OV AC
MOV A,Rn | Move register to Accumulator | 1 | 1 |
MOV A,direct | Move direct byte to Accumulator | 2 | 1 |
MOV A,@Ri | Move indirect RAM to Accumulator | 1 | 1 |
MOV A,#data | Move immediate data to Accumulator | 2 | 1 |
MOV Rn,A | Move Accumulator to register | 1 | 1 |
MOV Rn,direct | Move direct byte to register | 2 | 2 |
MOV Rn,#data | Move immediate data to register | 2 | 1 |
MOV direct,A | Move Accumulator to direct byte | 2 | 1 |
MOV direct,Rn | Move register to direct byte | 2 | 2 |
MOV direct,direct| Move direct byte to direct byte | 3 | 2 |
MOV direct,@Ri | Move indirect RAM to direct byte | 2 | 2 |
MOV direct,#data | Move immediate data to direct byte | 3 | 2 |
MOV @Ri,A | Move Accumulator to indirect RAM | 1 | 1 |
MOV @Ri,direct | Move direct byte to indirect RAM | 2 | 2 |
MOV @Ri,#data | Move immediate data to indirect RAM | 2 | 1 |
MOV DPTR,#data16 | Load Data Pointer with 16-bit const | 3 | 2 |
MOVC A,@A+DPTR | Move Code byte rel. to DPTR to Acc. | 1 | 2 |
MOVC A,@A+PC | Move Code byte rel. to PC to Acc. | 1 | 2 |
PUSH direct | Push direct byte onto stack | 2 | 2 |
POP direct | Pop direct byte from stack | 2 | 2 |
XCH A,Rn | Exchange register with Accumulator | 1 | 1 |
XCH A,direct | Exchange direct byte with Acc. | 2 | 1 |
XCH A,@Ri | Exchange indirect RAM with Acc. | 1 | 1 |
XCHD A,@Ri | Exchange low order digit indirect | | |
 | RAM with Accumulator | 1 | 1 |

Number and String Formats
Numbers : Decimal (default) : e.g. 34, 127, 255, 0, -1, -27
 Binary : e.g. 01110101B
 Hexadecimal : e.g. $7F, 7Fh, 0FFH, $FF, 0A8H
 note the leading $ or a trailing h or H.
 Note: if not preceded by $ hex constants must start with 0-9. eg 0C7h

Characters: 'A' - 'Abc' - ‘A’,00DH,00AH (mixed mode), "T"
Strings : 'abc' or "abc". Only with DB directive for putting strings into CODE
 memory. Use the MOVC A,@A+DPTR, or MOVC A,@A+PC to access values

Operators : () + - / * MOD SHR SHL NOT AND OR XOR

Boolean variable manipulation
 | Byte | Cycle | C OV AC
CLR C | Clear Carry | 1 | 1 | 0
CLR bit | Clear direct bit | 2 | 1 |
SETB C | Set Carry | 1 | 1 | 1
SETB bit | Set direct bit | 2 | 1 |
CPL C | Complement Carry | 1 | 1 | X
CPL bit | Complement direct bit | 2 | 1 |
ANL C,bit | AND direct bit to Carry | 2 | 2 | X
ANL C,/bit | AND complement of dir. bit to Carry | 2 | 2 | X
ORL C,bit | OR direct bit to Carry | 2 | 2 | X
ORL C,/bit | OR complement of dir. bit to Carry | 2 | 2 | X
MOV C,bit | Move direct bit to Carry | 2 | 1 | X
MOV bit,C | Move Carry to direct bit | 2 | 2 |
JC rel | Jump if Carry is set | 2 | 2 |
JNC rel | Jump if Carry not set | 2 | 2 |
JB bit,relative | Jump if direct bit is set | 3 | 2 |
JNB bit, relative| Jump if direct bit is not set | 3 | 2 |
JBC bit, relative| Jump if dir. bit is set & clear bit | 3 | 2 |

Program Branching
 | Byte | Cycle | C OV AC
ACALL addr11 | Absolute subroutine call | 2 | 2 |
LCALL addr16 | Long subroutine call | 3 | 2 |
RET | Return from subroutine | 1 | 2 |
RETI | Return from interrupt | 1 | 2 |
AJMP addr11 | Absolute jump (dest in same 2K page)| 2 | 2 |
LJMP addr16 | Long jump – jump anywhere (safest) | 3 | 2 |
SJMP rel | Short jump (relative address) | 2 | 2 |
JMP @A+DPTR | Jump indirect relative to the DPTR | 1 | 2 |
JZ rel | Jump if Accumulator is zero | 2 | 2 |
JNZ rel | Jump if Accumulator is not zero | 2 | 2 |
CJNE A,direct,rel | Compare direct byte to Accumulator | | |
 | and jump if not equal | 3 | 2 | X
CJNE A,#data,rel | Compare immediate data to | | |
 | Accumulator and jump if not equal | 3 | 2 | X
CJNE Rn,#data,rel | Compare immediate data to register | | |
 | and jump if not equal | 3 | 2 | X
CJNE @Ri,#data,rel| Compare immediate data to indirect | | |
 | RAM and jump if not equal | 3 | 2 | X
DJNZ Rn,rel | Decrement register, jump if not zero| 2 | 2 |
DJNZ direct,rel | Decrement direct byte and jump if | | |
 | not zero | 3 | 2 |
NOP | No operation | 1 | 1 |

Assembler Directives and Controls
; Everything after a semicolon (;) on the same line is a comment
Label: Must start in column 1 – Defines a new Label - colon is optional.

Controlling Memory Spaces and Code location
 ORG 56H Specify a value for the current segment's location counter.
 USE IRAM Makes the data space the currently selected segment
 USE ROM Makes the code space the currently selected segment

Defining Byte and Bit values
TEN EQU 10 EQUates 10 to symbol TEN, like #define in C, CONST in Delphi
ON_FLAG BIT 6 Assigns BIT 6 (in data or SFR space) to the symbol ON_FLAG

Allocating Memory
SP_BUFFER: RMB 6 Reserves Memory Byte – reserves 6 bytes of storage in current
 memory space (affected by most recent USE IRAM/ROM).
Message: DB 'Hi' Define Byte(s): Store byte constants in code space.

; The following are all equivalent – the string hello followed by a newline and a null.
newline EQU 13
 DB "H","E","L","L","O",13,0
 DB "Hello",13,0
 DB "Hello",newline,0

