How to do weighted random testing for BIST?

Joachim Hartmann
Fachbereich Informatik
Universitat des Saarlandes
66041 Saarbriicken

Gunter Kemnitz
Institut fur Technische Informatik
Technische Universitat Dresden
01062 Dresden

Germany

Abstract

In this paper, a strategy is proposed which takes
into account all aspects of weighted random testing
for BIST. Our approach arises from results concern-
ing the impact of weight rounding and a new combina-
tion of known techniques like coupling unweighted and
weighted pattern generation, basing weight calculation
on a precomputed test [2, 6], numerical mazimization
of pattern coverage [4], GURT-like hardware imple-
mentation [10], and avoiding auto-correlations.

As an empirical evaluation, we examined the only
random pattern resistant ISCAS 85 benchmarks c2670
and c7552. For these circuits, 100% fault coverage was
achieved after a total of 16,000 and 256,000 patterns,
respectively. The hardware overhead compared to a
pure random test is less than 2.5%.

1 Introduction

Due to their low hardware costs built-in self-tests
(BISTs) based on random patterns are very attrac-
tive. However, some circuits contain random pattern
resistant faults which cannot be detected after a rea-
sonable amount of time. To overcome this problem,
the following strategies have been proposed: test point
insertion [3], addition of deterministically computed
patterns or of a random-like sequence containing such
patterns [1, 7], and weighied random testing, which
means that the primary inputs (PIs) are given indi-
vidual probabilities (weights) of being 1 [8, 9]. When
choosing one of these strategies one has to take into ac-
count the design effort (including calculations for test
point location, test vector computation, weight opti-
mization, ...), hardware overhead, test length, and
fault coverage. The decision which solution is to be
adopted depends on the circuit and on how priori-
ties are given to the above factors. Nevertheless, the

weighted random approach, especially if it couples un-
weighted and weighted pattern generation, is promis-
ing in many cases.

Previous papers dealing with weighted random test-
ing mainly focussed on single aspects of the issues
mentioned above: Fast heuristic optimization proce-
dures were suggested in [6, 2]. But, compared to nu-
merical methods, they are inferior with respect to fault
coverage and test length (cf. [4]). A numerical opti-
mization achieving excellent fault coverages for one
weight set was given in [9]. However, this approach
consumes much CPU time since it requires compu-
tation (or approximation) of detection probabilities.
Numerical optimizations can be accelerated if they
are based on precomputed tests. In this case a com-
bination of unweighted and weighted pattern genera-
tion should be adopted as it has been pointed out in
[4]. Nevertheless, there remains the task of producing
weighted random patterns on-chip. Efficient hardware
generators have been developed in [10, 6], but, with a
reasonable amount of hardware, they are not able to
realize precisely those input probabilities calculated by
the weight optimization. Therefore, usually, optimal
weights with respect to unconstrained optimizations
have to be rounded to values that can be made feasi-
ble. Of course, this may result in solutions that are
suboptimal for the constrained problem.

In this paper, we present a strategy which takes
into account all these aspects. Qur approach arises
from results concerning the impact of weight rounding
and combines elements of known techniques for weight
optimization and implementing weighted random pat-
tern generators. As an empirical evaluation of our
method, we examined ¢2670 and ¢7552, the only ran-
dom pattern resistant ISCAS 85 benchmark circuits.
For both circuits, 100% fault coverage was achieved.
The additional circuitry required an overhead of less
than 2.5% compared to the implementation of a pure
random test.

2 Weight optimization

Following [6, 2, 4], we will apply a two-phased test.
In the first phase, unweighted random patterns are
used to detect well random testable faults. From test
vectors, which are calculated by ATPG for the remain-
ing faults, input probabilities for the second phase are
derived. As it has been proposed in [4], this can be
done by a numerical optimization whose objective is
to maximize the expected coverage of these patterns.

For a formal description, we assume that n is the
number of PIs and m is the number of calculated test
patterns. Let ¢! = (¢! ...,) € {0,1,%}" (* means
don’t care) be the i'" calculated test pattern and p;
be the probability that a weighted random input com-
bination matches' ¢. If q; is the probability that the
§'* PI has the logical value one, it holds the following
identity:

pi= [] (¢t +(1-

J i

gj) - (1 =15).

Let N be the number of weighted random patterns to
be used in phase 2. Then the expected pattern uncov-
erage for N is defined by

.2(1 —p)V.

TN =

3|~

UN equals the expected percentage of #’s not matched
by N random patterns. UV is a convex function of
each single ¢;. Thus, it is well suited for a downhill
climbing which takes descents along coordinate axes
since for these directions the line search problem can
be solved numerically (e.g. by golden section search)
(cf. [4]).

As a matter of fact, ¢; does not require any op-
timization, if for all pattern indices i, it is tj- = %
(= ¢ — 05),orth =% Vi =1(=q —1),or
tj- =% V tj- =0 (= ¢; — 0). It is crucial to our
approach that such situations occur often since they
allow a cheap hardware implementation. For ¢2670
(c7552), where n = 157 (206), we calculated m = 184
(185) different patterns which allowed 50 (25) 0.5-, 2
(22) 1-, and 43 (50) 0-assignment for the ¢;’s.

In our experiments, we observed that the opti-
mization procedure described above calculated many
weights which are very close to 0 and 1. Such weights,
especially if they have an irregular structure, require
high hardware implementation costs. For that reason,

LA pattern ¢t = (¢, ...

‘ .., tn) is said to match ¢* if for all j it
holds: t; Fx = t; = t;.

2670 7552
PC | FC PC | FC
k=oo | 65.52% | 99.61% (10) | 58.68% | 99.83% (13)
k=5 |6519% | 99.96% (1) | 58.59% | 99.99% (1)
k=4 |64.17% | 100% (0) | 58.01% | 99.97% (2)
k=3 |55.66% | 99.69% (8) | 53.37% | 99.99% (1)

Table 1: Optimization restricted to [27% 1 — 2-%]

| |continuous| 3-valued |

2670 | PC' | 64.17% | 60.49%
FC| 100% (0) | 99.85% (4)
7552 | PC'| 53.31% | 52.17%
FC | 99.99% (1) | 99.99% (1)

Table 2: Continuous vs. 3-valued optimization

we restricted the line search of the descending proce-
dure to computing only weights from [27%,1 — 27%]
where k is a small non-negative integer. Input prob-
abilities lying outside this interval after an uncon-
strained optimization (*k = 00”) then accumulate to
the values 27% and 1—27%. As a consequence the num-
ber of different weights is reduced. Moreover, random
bits with these biases can easily be taken from the out-
put and the inverted output of an k-input AND gate
which is fed by uniformly distributed random bits.

3

Results obtained in this way are shown in Ta-
ble 1. For ¢2670 and c7552, it gives pattern coverages
(PC), overall fault coverages? (FC), and in brackets
the total number of undetected testable faults. They
were achieved by applying 9000 (c¢2670) and 64000
(c7552) pure random patterns and the same number of
weighted input vectors. As it can be seen in Table 1,
pattern coverage monotonically increases in k, while
fault coverage becomes maximal for k£ = 4 (¢2670) and

k=35 (c7552).

As a further step to reducing the number of differ-
ent weights, we forbade all input probabilities different
from 2% 0.5, and 1—27F. To do that, we replaced the
golden section search for one-dimensional optimization
by a procedure taking that value {27%,0.5,1 — 27%}
which minimizes the expected pattern uncoverage. In
Table 2, results for this 3-valued optimization are
given. The same pattern numbers as in Table 1 were
applied. %k was chosen as 4 for c2670 and as 3 for
c7552. It follows that losses in fault coverage are only

slight.

2The fault coverage was taken from all non-redundant stuck-
at faults.

circuit under test (CUT)

ux

S2

S3

P

(TPS) OT.

test phase select

Figure 1: Proposed test pattern generator structure

3 Realization of the Test Pattern Gen-
erator

The special structure of weights calculated by the
procedure described in the previous section allows
an efficient implementation of the pattern generator
which is similar to, but conceptually simpler than
Wunderlich’s GURT [10]. The generator is shown in
Figure 1. It consists of three shift registers S1, S2, S3
with lengths I;, l5, and l3. S1 has a linear feedback
defined by a primitive polynomial in order to produce
a maximum length sequence. As a consequence S1’s
outputs are one with probability % The control sig-
nal test phase select (TPS) is set to one during phase 1
and set to zero during phase 2. For TPS= 1, S1, S2
and S3 are connected in series. Thus, the uniformly
distributed bits from S1 are propagated to S2 and S3,
and we have ¢; = 0.5 for j = 1,...,n. If TPS=0
(phase 2), the multiplexer between S1 and S2 passes
to S2 the logical AND of k random sequences derived
from S1. Thus after l5 steps, S2’s outputs and inverted
outputs have probability 2=* and 1—27* respectively,
to be one. The circuitry separating S2 from S3 is a
single AND-gate setting S3’s input to zero if TPS= 0.
So after at most I3 steps, outputs and inverted out-
puts of S3 will carry constant zeros (¢; = 0) and ones
(¢; = 1), respectively.

A problem arises by auto-correlations within the
pattern sequence produced in phase 2. To avoid them,
we took the logical EXOR of two stages of S1 for each
input of the AND gate between S1 and S2. A detailed
description of possible dependencies and an explana-
tion of how they are avoided by the above strategy is
given in [5].

To get repeatable results, the pattern generator has
to be reset at the beginning. The reset value can be
chosen as a hard to match # in order to increase fault
coverage. Resetting to a specific value causes no over-

head since a flipflop’s reset can be done to 1 and to 0
at the same costs.

To finish this section, let us sum up the additional
hardware required for our pattern generator. It needs
a shift register cell for each input of the CUT, some
EXOR cells for the feedbacks of S1, a k-input and a 2-
input AND gate, a multiplexer, and k EXOR gates (for
calculating the input signals of the AND gate between
S1 and S2). A flipflop for storing the TPS-signal also
has to be added.

4 Experimental Results

The proposed design technique for pattern gener-
ation has been applied to ¢2670 and c¢7552. Table 3
shows the fault coverages obtained for different test
lengths. (A test length given as 2 x # means that the
whole test consisted of z unweighted and = weighted
patterns.) For ¢2670, all faults can be detected af-
ter only 16,000 patterns, for ¢7552 256,000 patterns
are necessary. Note that the later number is not too
high: If the time necessary for contacting the CUT is
taken into account, test lengths merely become critical
if they are in the order of seconds. However, assuming
a delay of 100 nanoseconds for ¢7552, our test would
take only 0.0256 seconds.

To describe the overhead for our pattern genera-
tors, we counted shift register cells connected to the
CUT, extra flipflops (FFs) and gates separately. In
this way, we can avoid assumptions about the number
of gate equivalents (GEs) for FFs (which depend on
the given technology) and about the existence of in-
put registers which might be used for the generator.
For the gate count of the additional gates, we took the
following values (static CMOS): 0.5 - n GEs for an n-
input NAND or NOR, 2.5 (n— 1) GEs for an n-input
EXOR, and 1.5 GEs for a 2 : 1 multiplexer (realized as
transmission gate). The results are given in Table 4.

c2670

test length fault coverage

(undetected faults)

2 x 5000 | 99.58% (11)
2 x 6000 | 99.85% (4)
2 %7000 | 99.88% (3)
2 x 8000 | 100.00% (0)

c7552
test length fault coverage
(undetected faults)
2 % 16000 | 99.88% (9)
2 % 32000 | 99.96% (3)
2 % 64000 | 99.99% (1)
2 x 128000 | 100.00% (0)

Table 3: Fault coverages obtained by pattern generator

FTFs on | extra | additional

inputs | FFs gates
c2670 157 1 14.5 GEs
c7552 206 1 12.0 GEs

Table 4: Overhead for pattern generator

It becomes clear that the overhead is mainly caused
by the shift register cells which are also necessary for
a LFSR based generation of pure random patterns.
Assuming > 4 GEs per flipflop, less than 2.5% of the
overall overhead are due to the additional gates and
the control flipflop.

A comparison to other approaches (cf. [5]) shows
that our solution achieves highest fault coverages while
requiring minimum hardware overhead. Design effort,
which here means calculation of weights, is only lower
in [6, 2]. However, the difference is negligible as the
most expensive part (ATPG) is the same as in our
method. Moreover, in [6, 2] time savings during weight
optimization have to be paid by considerable losses in
fault coverage (cf. [4]).

5 Conclusion

In this paper, a method to implement self-tests
which takes into account design effort, hardware over-
head, fault coverage, and test length has been de-
scribed. For the most intractable ISCAS 85 bench-
mark circuits, we succeeded in detecting all non-
redundant stuck-at faults after an acceptable number
of patterns. An urgent and interesting question is how
similar results can be obtained for sequential circuits
and fault models. It should be possible to attack this
problem by a generalization of the presented scheme.

Acknowledgements

The authors would like to thank Marita Hero and
Wolfgang Vogelgesang for reading the manuscript.

References

[1] S. Akers and W. Jansz. Test set embedding in a
built-in self-test environment. In Proc. of the Int.

Test Conf., 1989.

[2] F. Brglez, C. Gloster, and G. Kedem. Built-in
self-test with weighted random pattern hardware.
In Proc. of the Int. Conf. on Comp. Design, 1990.

[3] E. B. Eichelberger and E. Lindbloom. Random-
pattern coverage enhancement and diagnosis for
LSSD logic self-test. IBM Journal Research and
Development, 27(3), May 1983.

[4] J. Hartmann. On numerical weight optimization
for random testing. In Proc. of the joint EDAC-
EUROASIC Conf., 1993.

[5] J. Hartmann and G. Kemnitz. How to do
weighted random testing for BIST? TR-13/1993,
SFB 124, University of Saarbriicken, 1993.

[6] F. Muradali, V. K. Agarwal, and B. Nadeau-
Dostie. A new procedure for weighted random
built-in self-test. In Proc. of the Int. Test Conf.,
1990.

[7] T. Pomeranz and S. Reddy. 3-weight pseudo-
random test generation based on a deterministic
test set. In Proc. of the VLSI Design Conf., 1992.

[8] H. Schnurmann, E. Lindbloom, and R. G. Car-
penter. The weighted random test-pattern gener-
ator. IEEE Trans. on Computers, C-24, 1975.

[9] H.-J. Wunderlich. On computing optimized prob-
abilities for random tests. In Proc. of the Design

Automation Conf., 1987.

[10] H.-J. Wunderlich. Self test using unequiprobable
random patterns. In Proc. of the Int. Symp. on
Fault-Tolerant Computing, 1987.

