A RISC Processor with Extended Forwarding

Gert Markwardt* Gunter Kemnitz** Reiner G. Spallek**

* Siemens AG
** Technische Universitat Clausthal
*** Technische Universitat Dresden

E-Mail: gkemnitz@informatik.tu-clausthal.de

Abstract

The paperexaminesa simple conceptualmodification of the operationunit of a
RISC processor.We proposeto substitutea part of the conventionalgeneral
purposeregisterfile by a shift registerfor all operationresults. The presented
approachallowsto reducethe instructionsize for a greatdeal of instructionsand
so the instruction stream, and it is also a promising approachto make the
processor architecture more regular.

1 Introduction

A basicidea of the RISC conceptwas to optimize functionality and simplify the computer
structure. The result, a computeith lessandsimplerinstructionscould run a programasfast
as a complex computer[1]. Now the descendant®f the RISC prototype are even more
complex.So, anotherRISC-like simplificationwould be nice. At thefirst glance,our proposed
shift registerfile will not look like a simplification. But it hasthe potentialof solving some
difficult problems of modern superscalar processors in a simple way.

Theideaoriginatesfrom our researcho reducetheinstructionstreamof RISC processor§2].
In this context,we could observethe following featureof RISC programs.Most resultsof
calculationsandload operationsare usedasoperandonly a few instructionsafter calculation.
Storingthemin a shift registerinsteadof the conventionalregisterfile would savea register
addressn the instructionword, for the destinationis alwaysthe shift register.Section2 will
illustratethatin RISC programsa lot of calculatedvalueshavea shortlife time. In section3 a
hardwareconceptis discussedand section4 shows exampleinstruction formats for code
compaction.

Beyondtheincreasegrogramcodedensity,therearealsootheradvantagesrlo put all results
into a shift register and addressthem by the distancebetweenproducing and using is a
substitutefor the forwardingconcept.t reduceshe numberof pipeline stagesandit offersa
very simple conceptto handle speculativeexecutionof instructions.Thesebenefitswill be
discussed in section 5.

2 Temporary values

RISC processorsachievehigh performanceby fast executionof simple machineinstructions
with short executionlatencies.However, a lot of temporaryvaluesarise when a complex
expressions executedas a long sequencef simple machineoperationsFigure 1 showsan
examplefor the executionof a high-level-languagexpressiorandthe correspondinglirected
acyclic graph (DAG). The expression is calculated by four RISC instructions.

In the example the leavesof the DAG are programvariables.An interior noderepresentsn
operatorand its children representts operands.Only the result of the last multiplication,
representedy tl is of interestlater in the program.The intermediateresultst2, t3, t4 are
temporary values with a short life time.

t1
©
1 / \@ (1) ADDRL, A B /] R1=A+B

/® (2) ML R, R, C |/ R=RI*C
@ (&) (3) SWBRS, R, D [/ R3=R2+D

(4 ML R4, R, RB // R4=RI*R3

Figure 1: Directed acyclic graph and RISC program to calculate (A +B) * (A+B) *C - D)

The next sectionwill showthatit is not necessaryo assignregisteraddresseso temporary
results. This in turn allows to code a great deal of the instructions in smaller code words.

3 The proposed architecture

Theideais to usea shift registerto collectthe results.Eachtime a newresultis producedt

will be put onto the top of the shift registerfile, the older datamove down. The shift register
musthaverandomaccesdgor readingoperandsThe accessaddresss equalto the numberof

shifts performedsinceit wasproduced.The compilerknowshow often a valuewill be shifted
beforeit is neededassourceoperand Consideringa sufficientlength,all temporariesanthus
be passedhroughthe shift registerwithout storing theminto generalpurposeregisters(see
Figure 2).

However,in somecasesit is not sufficient to storevaluesonly in the shift register.Some
values have long life times within a procedureor a program (e.g. stack pointer, return
addresses)They would get lost by shifting them out. There are also casesin which the
compilercannot predictthe positionof a certainvaluewithin the shift register.That'swhy we
still need in addition to the shift register a conventional register file.

(1) (2) (3) (4)
ADD A, B MJL #0, C SUB #0, D MJUL #2, #0
! ! ! !
t4 t3 t2 tl

#0 #0 t4 #0 t3 #0 t2

#1 #1 #1 t4 #1 t3

#2 #2 #2 #2 t4
shift register shift register shift register shift register

Figure 2: Passing temporaries via shift register

Usually, in RISC processorsa bypassbuffer for ALU resultsis implementedfor result
forwarding (Figure 3). We proposeto replacethe bypassbuffer by a shift register.Figure 4
showsthe modified operationunit. Eachoperationwill now be performedin two (pipelined)
steps.n thefirst step,the two operandsarereadeitherfrom shift registeror generalpurpose
registerfile. In the secondstep,the operationis performed.To obtaina regularstructure also
the storeandload operationsshouldbe performedin only two steps.This in turn doesnot

allow the combination of address calculation and memory access.

general purpose register file

bypass

buffer

Figure 3: Conventional ALU with bypass

buffer

general purpose register file

shift
write port

shift
register file

random
read ports

T L

Figure 4: The modified operation unit

As Figure5 shows,load and store operationsdo not perform addresscalculations.The address
has to be calculatedin a precedinginstruction. The copy instructionis a peculiarity of the
conceptResultsthathaveto be availableover a longerperiodmustbe movedto theregisterfile
before they are moved out of the shift register.

For the shift register,a part of the generalpurposeregisterfile with someadditionaladdressing

logic could be used instead of a separate physical shift register.

Operation

| general purpose register file |

#X X ry #y

MUX MUX

ALU
y #top

shift write port

shift register file

random read ports
]

#top <==xOPy

Load

| general purpose register file

#X rx

MUX

\J

address .
data in

y #top

shift write port

shift register file

random read ports
]

address <==x #top <==data in

Store

| general purpose register file |

#X rx ry #y
MUX MUX
address data out

shift write port

shift register file

random read ports

address <==x dataout<==y

Copy

general purpose register file

Iz

shift write port

shift register file

random read ports

]

1z <== #x

Figure 5: Data path for ALU operation, load, store, and copy

The machinewith the proposedoperationunit will havelessbut simplerinstructionsthana state

of the art RISC processor, i.e. it is more RISC-like.

A critic of our conceptmay saythatthe simplification of the instructionswill increasehe number
of instructionsof a programand so its run time. Most instruction overheadarisesfrom the
splitting of conventionaRISC load andstoreinstructionsinto a separateddres<alculationand
aninstructionfor memoryaccessA processomwith only oneunit for operationanddatamoving
will be slower.For a processowwith multiple units asshownin Figure 6 the situationis different.
The addressalculationcanbe performedin oneof the ALUs, andin the nexttime slice dataare
movedfrom or to the memory.Simultaneouslyhe nextaddressalculationcanbe performedetc.
But if no address calculation is needed, the ALU can also perform aopération.So, our shift
registerprocessommay even be fasterthen a conventionalRISC processorjf it hasthe same
number of arithmetic logic units.

general purpose register file

]]]
Y \ l \ \i L \ A
[mux | [mux | MUX MUX [mux | [mux |
| ___/)
ALU 1 \ ALU 2 / ALU n
shift shift shift
write port write port write port
shift shift shift
register file register file register file
random random random
read ports read ports read ports

Figure 6: Data pathf a VLIW- or a superscalar processor using shift registers for the results

4 Compact Instruction Encoding

Our researctprojectfocuseson methodso increasehe programcodedensity.RISC processors
usea small numberof different 32 bit instructionformats. As an example,Figure 7 showsthe
formats of MIPS processors.

Q) OPC:opcode
oPC Tar get funct: exendedopcode (fustion)
6 26 Target: jump target address

Rd: desination regster address
&) Rs1,Rs2:saurceregisteraddresses

R Rs1 | i o ; i
orc d > mmedi at e Immediae: immediae value (16 bits)
6 S S 16 shamt: shift amount
()
oPC Rd Rs1 Rs2 shant funct
6 5 5 5 5 6

Figure 7: Instruction formats of the MIPS processor [3]

The proposedshift register techniquewith implicitly directed results gives us the ability to
introduce smaller formats for frequently used instructions.

oPC s1 2 4) S1, S2: general purpose register
or shift register addresses
6 5 5 Imm: short immediate value (5 bits)
o°C sl Imm ©®)
6 5 5

Figure 8: Compact instruction formats without destination register

Dueto thelimited opcodefield size,it is importantto find a usefulbalancebetweenstandardand
compactencodingin the instructionsetdesign.Experimentsandinstructionusagemeasurements

have shown that even in RISC processors the greatest deal of the instruction stream is @aused by
small subsetof the instructionset (for one exampleseeappendix).We currently evaluatethis
approachin experimentswith our configurable processorsimulator [4] and a special code
generatoi{5] developedas backendfor the SUIF C compiler[6]. Our experimentsare still in
progressbut it turns out that compactinginstructionsin the describedway would significantly
increase the program code density and reduce the instruction stream.

5 Some other advantages

With the increasingnumberof transistorsthe processodesignmustbecomemoreregular.Our
idea with the shift register would allow to design more regular processors.The following
functions could be simplified:

» Forwarding: In a plaipipelineimplementatiorof a RISC processoresultsarenot availableto
the nextinstruction.However,asshownin Figure 1, temporaryresultsare often neededn the
following instruction. To avoid NOPs, RISC processordave a specialforwarding logic. It
comprisescomparatorsto detectif one of the sourceregistersis the destinationof the
precedingoperation,anda specialbypasdogic. In our concept,an operationcandirectly use
the result of its predecessor without special logic simply by addressing shift register zero.

* Fewer pipeline stages:The proposedoperationunit needsonly two pipeline stages:Select
operandsand execute.The third, writing the result back into the registerfile, is saved.A
shorter pipeline makes the handling of interrupts and traps easier.

» A simple concept for the speculatiggecutionof instructions:Speculativeexecutionis usedin
processorsvith multiple processingunits for a betterexploitationof fine grain parallelism.In
our conceptthe speculativeresultwill be put in the shift registeras any other result. If the
program branchesin the predicted way, the value can be addressedby the number of
instructionsbetweencalculationandusagelf the point of usagewill not bereachedihe data,
which areidle in this casewill drop out of the shift registerafter a certaintime. Summingup,
speculative execution does not need any additional hardware.

6 Summary

Substitutinga shift registerfor a part of the generalpurposeregisterfile of a RISC processor
allows to encodeinstructionswithout explicit destinationregisteraddressThis can be usedto

reducethe instruction stream.On the other hand, the shift register conceptoffers interesting
simplifications of the processor architecture.

Appendix

Thefollowing tableshouldillustratethata RISC programin generalusesmainly a smallsubsetf
the processorsnstruction set. The table showsthe frequencyof executedinstructionsfor the
programsyzip andghostscript on a MIPS processorMore than90% or 75% respectivelyof the
instructionstreamconsistof only 18 differentinstructions.Theseinstructionsare candidatesor
encoding with compact instruction formats.

gzip ghost scri pt
instr. count % sum instr. count % sum
addu 6980621 16.21% 16.2% I w 4606215 14.09% 14. 1%
| nop 3950888 9.18% 25.4% addu 3352641 10.26% 24.3%
addi u 3810672 8.85% 34.2% sSwW 3278786 10.03% 34.4%
| bu 3097410 7.19% 41.4% addi u 2747057 8.40% 42.8%
andi 2856325 6.63% 48.1% bnop 1619402 4.95% 47. 7%
bnez 2460465 5.71% 53.8% | nop 1491952 4.56% 52.3%
sl | 2419990 5.62% 59.4% beqz 1423013 4.35% 56.7%
bne 2393737 5.56% 65.0% bnez 1028638 3.15% 59.8%
I hu 2206812 5.13% 70.1% bne 863465 2.64% 62.4%
| w 2201217 5.11% 75.2% li 842103 2.58% 65.0%
beqz 2164596 5.03% 80.2% sl | 807479 2.47% 67.5%
sltu 2002593 4.65% 84.9% | bu 702178 2.15% 69. 6%
sSwW 1290948 3.00% 87.9% sltu 606081 1.85% 71.5%
sh 664991 1.54% 89.4% b 583343 1.78% 73.3%
bnop 523100 1.21% 90.6% subu 557459 1.71% 75.0%

References

[1] HennessyJ. L.; PattersonD. A.: ComputerArchitecture- A Quantitative Approach
Morgan Kaufmann Publishers, Inc., San Mateo, 1990.

[2] Kemnitz,G.; Markwardt,G.; Schulz,P., Sawitzki, S.; Spallek,R. G.: Designof Memory
SpaceOptimizedandInstructionStreamReduceRISC Processorslech.Rep.FI/95/15,
Fakultat Informatik, TU Dresden, November 1995.

[3] MIPS Computer Systems, Inc.: MIPS R4000 User’'s Manual, 1991.

[4] Markwardt, G.; Kemnitz, G.; Schulz,P; S.; Spallek,R. G.: PROSIM: A Tool for
Instruction Level Simulation of RISC Processors,Tech. Rep. FI/95/16, Fakultat
Informatik, TU Dresden, November 1995.

[5] Schulz,P., DesignandImplementatiorof an ObjectCodeGeneratoffor SUIF Tech.Rep.
FI1/95/17, Fakultat Informatik, TU Dresden, November 1995.

[6] Stanford SUIF Compiler Group, SUIF: A parallelizing & optimizing research compiler,
Tech. Rep. CSL-TR-94-620, Computer Systems Lab, Stanford University, May 1994.

