
Abstract

The paper examines a simple conceptual modification of the operation unit of a
RISC processor. We propose to substitute a part of the conventional general
purpose register file by a shift register for all operation results. The presented
approach allows to reduce the instruction size for a great deal of instructions and
so the instruction stream, and it is also a promising approach to make the
processor architecture more regular.

1 Introduction

A basic idea of the RISC concept was to optimize functionality and simplify the computer
structure. The result, a computer with less and simpler instructions could run a program as fast
as a complex computer [1]. Now the descendants of the RISC prototype are even more
complex. So, another RISC-like simplification would be nice. At the first glance, our proposed
shift register file will not look like a simplification. But it has the potential of solving some
difficult problems of modern superscalar processors in a simple way.

The idea originates from our research to reduce the instruction stream of RISC processors [2].
In this context, we could observe the following feature of RISC programs. Most results of
calculations and load operations are used as operands only a few instructions after calculation.
Storing them in a shift register instead of the conventional register file would save a register
address in the instruction word, for the destination is always the shift register. Section 2 will
illustrate that in RISC programs a lot of calculated values have a short life time. In section 3 a
hardware concept is discussed and section 4 shows example instruction formats for code
compaction.

Beyond the increased program code density, there are also other advantages. To put all results
into a shift register and address them by the distance between producing and using is a
substitute for the forwarding concept. It reduces the number of pipeline stages and it offers a
very simple concept to handle speculative execution of instructions. These benefits will be
discussed in section 5.

A RISC Processor with Extended Forwarding

Gert Markwardt* Günter Kemnitz** Reiner G. Spallek**

* Siemens AG

** Technische Universität Clausthal

*** Technische Universität Dresden

E-Mail: gkemnitz@informatik.tu-clausthal.de

2 Temporary values

RISC processors achieve high performance by fast execution of simple machine instructions
with short execution latencies. However, a lot of temporary values arise when a complex
expression is executed as a long sequence of simple machine operations. Figure 1 shows an
example for the execution of a high-level-language expression and the corresponding directed
acyclic graph (DAG). The expression is calculated by four RISC instructions.

In the example, the leaves of the DAG are program variables. An interior node represents an
operator and its children represent its operands. Only the result of the last multiplication,
represented by t1 is of interest later in the program. The intermediate results t2, t3, t4 are
temporary values with a short life time.

(1) ADD R1, A, B // R1=A+B

(2) MUL R2, R1, C // R2=R1*C

(3) SUB R3, R2, D // R3=R2+D

(4) MUL R4, R1, R3 // R4=R1*R3

Figure 1: Directed acyclic graph and RISC program to calculate (A + B) * ((A + B) * C - D)

The next section will show that it is not necessary to assign register addresses to temporary
results. This in turn allows to code a great deal of the instructions in smaller code words.

3 The proposed architecture

The idea is to use a shift register to collect the results. Each time a new result is produced, it
will be put onto the top of the shift register file, the older data move down. The shift register
must have random access for reading operands. The access address is equal to the number of
shifts performed since it was produced. The compiler knows how often a value will be shifted
before it is needed as source operand. Considering a sufficient length, all temporaries can thus
be passed through the shift register without storing them into general purpose registers (see
Figure 2).

However, in some cases it is not sufficient to store values only in the shift register. Some
values have long life times within a procedure or a program (e.g. stack pointer, return
addresses). They would get lost by shifting them out. There are also cases in which the
compiler can not predict the position of a certain value within the shift register. That’s why we
still need in addition to the shift register a conventional register file.

t1

B

t2

t3

t4

C

D

-

*

+

A

*

(1) (2) (3) (4)

ADD A, B MUL #0, C SUB #0, D MUL #2, #0

↓ ↓ ↓ ↓
t4 t3 t2 t1

#0 #0 t4 #0 t3 #0 t2

#1 #1 #1 t4 #1 t3

#2 #2 #2 #2 t4

..

shift register shift register shift register shift register

Figure 2: Passing temporaries via shift register

Usually, in RISC processors a bypass buffer for ALU results is implemented for result
forwarding (Figure 3). We propose to replace the bypass buffer by a shift register. Figure 4
shows the modified operation unit. Each operation will now be performed in two (pipelined)
steps. In the first step, the two operands are read either from shift register or general purpose
register file. In the second step, the operation is performed. To obtain a regular structure, also
the store and load operations should be performed in only two steps. This in turn does not
allow the combination of address calculation and memory access.

A L U

M U X M U X

general purpose regist
�
er f

�
ile

bypass

buffer

A L U

M U X M U X

general purpose regist
�
er f

�
ile

s� h if t
�

reg� is� t
�
e r fi le

s� h if
�
t

�

w� r it
�
e port

�

r a n d
	

o m
re ad

	
 por t

�
s�

Figure 3: Conventional ALU with bypass
buffer

Figure 4: The modified operation unit

As Figure 5 shows, load and store operations do not perform address calculations. The address
has to be calculated in a preceding instruction. The copy instruction is a peculiarity of the
concept. Results that have to be available over a longer period must be moved to the register file
before they are moved out of the shift register.

For the shift register, a part of the general purpose register file with some additional addressing
logic could be used instead of a separate physical shift register.

Operation Store

general purpose register file

MUX

ALU

shift write port

shift register file

random read ports

#x rx ry #y

MUX

#top

#top <== x OP y

general purpose register file

MUX

shift write port

shift register file

random read ports

#x rx ry #y

MUX

address <== x data out <== y

address data out

Load Copy

general purpose register file

MUX

shift write port

shift register file

random read ports

#x rx

#top

general purpose register file

MUX

shift write port

shift register file

random read ports

rz

MUX

rz <== #x

address
data in

address <== x #top <== data in

Figure 5: Data path for ALU operation, load, store, and copy

The machine with the proposed operation unit will have less but simpler instructions than a state
of the art RISC processor, i.e. it is more RISC-like.

A critic of our concept may say that the simplification of the instructions will increase the number
of instructions of a program and so its run time. Most instruction overhead arises from the
splitting of conventional RISC load and store instructions into a separate address calculation and
an instruction for memory access. A processor with only one unit for operation and data moving
will be slower. For a processor with multiple units as shown in Figure 6 the situation is different.
The address calculation can be performed in one of the ALUs, and in the next time slice data are
moved from or to the memory. Simultaneously the next address calculation can be performed etc.
But if no address calculation is needed, the ALU can also perform another operation. So, our shift
register processor may even be faster then a conventional RISC processor, if it has the same
number of arithmetic logic units.

MU X

MUX

MUX

MUX

MUX

MUX

g� e� ne� ra
 l purpo� s� e� re� g� is� t
�
e� r f

�
ile�

A
�

LU 2
�

A
�

L U n�A
�

LU 1

s� hif
�
t

�

re� g� is� t
�
e� r f

�
ile�

s� hif
�
t

�

w� rit
�
e� po� r t

�

ra� nd
�

o� m
re� a� d

�
 p� o� rt

�
s�

s� hif
�
t

�

re� g� is� t
�
e� r f

�
ile�

s� hif
�
t

�

w� rit
�
e� po� r t

�

ra� nd
�

o� m
re� a� d

�
 p� o� rt

�
s�

s� hif
�
t

�

re� g� is� t
�
e� r f

�
ile�

s� hif
�
t

�

w� rit
�
e� po� r t

�

ra� nd
�

o� m
re� a� d

�
 p� o� rt

�
s�

Figure 6: Data path of a VLIW- or a superscalar processor using shift registers for the results

4 Compact Instruction Encoding

Our research project focuses on methods to increase the program code density. RISC processors
use a small number of different 32 bit instruction formats. As an example, Figure 7 shows the
formats of MIPS processors.

Figure 7: Instruction formats of the MIPS processor [3]

OPC Rd Rs1 Rs2 funct

6 5 5 5 5 6

(3)

OPC Rd Rs1 Immediate

5 5 166

(2)

OPC Target

6 26

(1) OPC: opcode
funct: extended opcode (function)
Target: jump target address
Rd: destination register address
Rs1, Rs2: source register addresses
Immediate: immediate value (16 bits)
shamt: shift amount

shamt

The proposed shift register technique with implicitly directed results gives us the ability to
introduce smaller formats for frequently used instructions.

Figure 8: Compact instruction formats without destination register

Due to the limited opcode field size, it is important to find a useful balance between standard and
compact encoding in the instruction set design. Experiments and instruction usage measurements
have shown that even in RISC processors the greatest deal of the instruction stream is caused by a
small subset of the instruction set (for one example see appendix). We currently evaluate this
approach in experiments with our configurable processor simulator [4] and a special code
generator [5] developed as back end for the SUIF C compiler [6]. Our experiments are still in
progress but it turns out that compacting instructions in the described way would significantly
increase the program code density and reduce the instruction stream.

5 Some other advantages

With the increasing number of transistors, the processor design must become more regular. Our
idea with the shift register would allow to design more regular processors. The following
functions could be simplified:

• Forwarding: In a plain pipeline implementation of a RISC processor results are not available to
the next instruction. However, as shown in Figure 1, temporary results are often needed in the
following instruction. To avoid NOPs, RISC processors have a special forwarding logic. It
comprises comparators to detect if one of the source registers is the destination of the
preceding operation, and a special bypass logic. In our concept, an operation can directly use
the result of its predecessor without special logic simply by addressing shift register zero.

• Fewer pipeline stages: The proposed operation unit needs only two pipeline stages: Select
operands and execute. The third, writing the result back into the register file, is saved. A
shorter pipeline makes the handling of interrupts and traps easier.

• A simple concept for the speculative execution of instructions: Speculative execution is used in
processors with multiple processing units for a better exploitation of fine grain parallelism. In
our concept the speculative result will be put in the shift register as any other result. If the
program branches in the predicted way, the value can be addressed by the number of
instructions between calculation and usage. If the point of usage will not be reached, the data,
which are idle in this case, will drop out of the shift register after a certain time. Summing up,
speculative execution does not need any additional hardware.

6 Summary

Substituting a shift register for a part of the general purpose register file of a RISC processor
allows to encode instructions without explicit destination register address. This can be used to

OPC S1 S2

6 5 5

(4)

OPC S1 Imm

6 5 5

(5)

S1, S2: general purpose register
or shift register addresses

Imm: short immediate value (5 bits)

reduce the instruction stream. On the other hand, the shift register concept offers interesting
simplifications of the processor architecture.

Appendix

The following table should illustrate that a RISC program in general uses mainly a small subset of
the processors instruction set. The table shows the frequency of executed instructions for the
programs gzip and ghostscript on a MIPS processor. More than 90% or 75% respectively of the
instruction stream consist of only 18 different instructions. These instructions are candidates for
encoding with compact instruction formats.

gzip ghostscript
 instr. count % sum instr. count % sum
 addu 6980621 16.21% 16.2% lw 4606215 14.09% 14.1%
 lnop 3950888 9.18% 25.4% addu 3352641 10.26% 24.3%
 addiu 3810672 8.85% 34.2% sw 3278786 10.03% 34.4%
 lbu 3097410 7.19% 41.4% addiu 2747057 8.40% 42.8%
 andi 2856325 6.63% 48.1% bnop 1619402 4.95% 47.7%
 bnez 2460465 5.71% 53.8% lnop 1491952 4.56% 52.3%
 sll 2419990 5.62% 59.4% beqz 1423013 4.35% 56.7%
 bne 2393737 5.56% 65.0% bnez 1028638 3.15% 59.8%
 lhu 2206812 5.13% 70.1% bne 863465 2.64% 62.4%
 lw 2201217 5.11% 75.2% li 842103 2.58% 65.0%
 beqz 2164596 5.03% 80.2% sll 807479 2.47% 67.5%
 sltu 2002593 4.65% 84.9% lbu 702178 2.15% 69.6%
 sw 1290948 3.00% 87.9% sltu 606081 1.85% 71.5%
 sh 664991 1.54% 89.4% b 583343 1.78% 73.3%
 bnop 523100 1.21% 90.6% subu 557459 1.71% 75.0%

References

[1] Hennessy, J. L.; Patterson, D. A.: Computer Architecture - A Quantitative Approach
Morgan Kaufmann Publishers, Inc., San Mateo, 1990.

[2] Kemnitz, G.; Markwardt, G.; Schulz, P., Sawitzki, S.; Spallek, R. G.: Design of Memory
Space Optimized and Instruction Stream Reduced RISC Processors, Tech. Rep. FI/95/15,
Fakultät Informatik,TU Dresden, November 1995.

[3] MIPS Computer Systems, Inc.: MIPS R4000 User’s Manual, 1991.

[4] Markwardt, G.; Kemnitz, G.; Schulz, P; S.; Spallek, R. G.: PROSIM: A Tool for
Instruction Level Simulation of RISC Processors, Tech. Rep. FI/95/16, Fakultät
Informatik,TU Dresden, November 1995.

[5] Schulz, P., Design and Implementation of an Object Code Generator for SUIF Tech. Rep.
FI/95/17, Fakultät Informatik,TU Dresden, November 1995.

[6] Stanford SUIF Compiler Group, SUIF: A parallelizing & optimizing research compiler,
Tech. Rep. CSL-TR-94-620, Computer Systems Lab, Stanford University, May 1994.

