
Abstract

Optimized locally exhaustive test pattern generators
based on linear sums promise a low overhead, but have
an irregular structure. The paper presents a new algo-
rithm able to compute the linear sums for real circuits up
to several hundreds of inputs and outputs. The idea is to
substitute a strategy of introducing fresh variables into
an array of sums for the former linear independence test.
This reduces the complexity of the calculation on an
enormous scale. Experiments with several hundred
randomly selected cone structures allow the rough esti-
mation that the so computed generators are on average
smaller than shift register based ones if the number of
equal size cones is not larger than the number of inputs
of the circuit under test.

1 Introduction

The advantages in VLSI technologies, higher speed,
density and complexity, make the implementation of self-
test functions more and more attractive. Self-test func-
tions are inserted by dividing a design into subcircuits
under test and adding circuitry for test pattern generation
and test response checking to the single subcircuits. Test
patterns that can be produced on chip by an inexpensive
hardware are mainly pseudo-random and exhaustive pat-
terns.

An exhaustive test means to verify the function. Combi-
national functions need 2inp different input vectors  (inp -
number of inputs). The exponential growth of the test
length with the number of input terminals restricts the
concept to circuits with a limited number of inputs:

 inp < 20 30� (1)

Sequential circuits cause more problems. Not only all
variations of input, but of input and memory stages have
to be checked. This leads to very tight bounds for the size

of the circuit to be tested exhaustively. In practice, the
exhaustive test of a sequential function is confined to the
test of a combinational function (e.g. by providing access
to the internal flip-flops via scan chains) [12]. For this
reason only combinational circuits will be considered in
this paper.
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Figure 1:  Cone structure of an example

Locally exhaustive [8] or pseudo exhaustive [5], [7] test-
ing is a concept to avoid the restricted number of input
terminals of the circuit to be tested. Often many or all
output variables of a combinational function depend only
on a small subset of input variables. The 8-input-circuit
in Figure 1 consists e.g. of 4 subfunctions with only 4
inputs. The subset of inputs effecting an output i is also
called cone i and its number of inputs cone width (wi ).
Locally exhaustive test, to stimulate not the whole func-
tion but only the cones with all input variations, allows to
reduce the number of test steps t down to

2 2
1

w w

i

s

t imax ≤ ≤
=
∑ (2)

(wmax - maximum number of inputs of a cone) i.e. down
to the number of tests between the amount to test the
largest cone (the other cones are tested simultaneously)
and the number of tests for all cones. A restricted cone
size:

wmax < 20 30� (3)

is substituted for a restricted number of inputs under test.
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Locally exhaustive testing is much less restrictive than
totally exhaustive testing. Nevertheless, the maximum
cone size of real circuits exceeds often the tolerable
bound. In [7] the maximum cone width of the generally
used test-benchmarks are listed which goes up to
wmax > 100. Additional control gates [9], segmentation
cells or scan cells [6] has to be built into the circuit to
reduce the cone size under test.
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Figure 2:  Test pattern generators to test the circuit
in Figure 1 in the locally exhaustive way

Locally exhaustive test pattern generators can be designed
for universal input spans [3], contiguous inputs [2], [11]
or for application-specific input spans [3], [7]. Universal
test pattern generators produce all 2wmax  different test vec-
tors for each and every possible wmax-bit input span.
Although, such a generator can be constructed [3], it
becomes much to large for real applications. A proper
substitute is a pseudo-random generator [8], e.g. a primi-
tive feedback shift register (Figure 2a). The random
sequence must be l-times longer than the exhaustive
sequence for the cone ( )l ≈ 4 106 . In this case, it con-
tains on average the 1− −e l  part of the input variations.

Exhaustive patterns for each span of wmax contiguous
inputs can be produced on chip by a feedback shift regis-
ter (Figure 2b). The feedbacked part (the first wmax flip-
flops) forms an exhaustive generator. The rest of the shift
register distributes the patterns. A sequence with the

same properties can be produced by an (n,k) cyclic code
over GF(2) [5] or a counter with an EXOR-Array [11].
Since, in a real circuit the input spans of the single cones
are not contiguous inputs, a special assignment of the
outputs of the test pattern generator to the inputs of the
circuit under test (CUT) is needed.

Figure 2c shows a locally exhaustive test pattern
generator designed for the cone structure in Figure 1. It
consists of a 4-bit exhaustive pattern generator, which
stimulates the majority of inputs under test, and linear
sums to stimulate the inputs left (only one in the
example). In comparison to the Figure 2a and b the
generator in Figure 2c needs only half of the number of
flip-flops, which means significantly less hardware.
However, the structure is not regular and the calculation
of it is very time consuming.

Next section will discuss the bottleneck in the calculation
and derives a new mathematical approach to master the
complexity. Section 3 presents the complete algorithm.
This algorithm has been used to calculate the structure
and size of test pattern generators for several thousand
different cone structures produced by a random number
generator. In section 4 the experiments and results are
described.

2 Mathematical background

The computation of linear sums for a locally exhaustive
test pattern generator can be related to a problem of the
linear algebra. The whole generator consists of a k-bit
long exhaustive generator and networks to produce
modulo-2 sums. The exhaustive generator may be a feed-
back shift register as in Figure 2c or a binary counter as
in Figure 3. Its outputs are considered as independent
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Figure 3: Linear sums of test sequences
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variables. Independent means in this context that all 2k

different states are produced during the test. This is only
a mathematical wording for exhaustive test pattern
generation. The modulo-2 sums consist of those inde-
pendent variables (alias outputs of the exhaustive genera-
tor). A generator output itself is considered to be a single-
summand sum.

By substituting multiple-summand sums (Figure 3b,c) for
single-summand sums (Figure 3a), the following two
effects are possible. If a so constructed set of sums is line-
arly independent, the generator produces another exhaus-
tive test sequence (Figure 3b). Each linear dependence
(one sum is the sum of others) halves the cycle length of
the produced patterns (Figure 3c).

The computation of the structure of a locally exhaustive
test pattern generator for an application-specific cone
structure can be described by a rule for each cone. The set
of sums assigned to its inputs must be linearly independ-
ent. These rules imply that the number of independent
variables (outputs of the exhaustive generator) must be at
least as large as the size of the maximum-size cone.
Other requirements of the calculation are low overhead
and low test time. The latter is equivalent to a low num-
ber of independent variables.
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Figure 4: Checking for linear dependence

The test for linear dependence on its own is a complex
task. For each tupel of two inputs, three inputs and so on,
it  has to be checked that the result of adding up the
corresponding sums is unequal to zero. In Figure 4, the
dependence will not be visible before the 9th step. To
guarantee independence 2 1w w− −  checks are required,
where w is the cone size. It is the same order of magni-
tude as verifying the exhaustive test by simulation.

The check for linear dependence, already time consum-
ing, does not include the calculation of the sums. A
purposeful strategy with low risk of rejects is needed. In
[10], a generic structure is assumed, describing the linear
sums for each number of independent variables and each
number of inputs of the circuit under test. If for a number
of independent variables no locally exhaustive test can be
performed the number of variables will be incremented.
In other words, after each unsuccessful trial the test time
doubles. At the latest, when the generator size reaches the

number of inputs of the whole circuit, which is equivalent
to a totally exhaustive test, each linear dependence
vanishes.

In [3] and [7] the computation starts with trying to
connect inputs with each other under test. These are pairs
of inputs that lead to different cones. The circuit in
Figure 1 has three of such pairs: (x1-x5), (x2-x7) and
(x3-x8). As the result, linear sums for less inputs have to
be calculated. No purposeful strategy has been presented
to select the sums themselves. The cone sizes of the
examples presented in [3] and [7] are so small that the
complexity of the dependence check does not matter.

The basic idea to handle the complexity is the following:
The sums are assigned input by input. The actual sum has
to introduce a fresh variable into the sum array of each
cone the input is connected to. In Figure 4, the sums a,
a b⊕  and a b c⊕ ⊕  are assigned to the first 3 inputs of a
cone. Selecting the next sum, it must include at least one
of the unused (fresh) variables d e f, , , �β γ as a sum-
mand. The fourth sum in Figure 4 b c⊕  would e.g. need
an additional summand. Other cones having also this
input, will also call for fresh variables. All requirements
together form a restricted set of alternatives for each new
sum.

Linear dependence cannot arise in the assigning process.
The first sum, assigned to a cone, is linearly independent,
since it contains at least one variable. The next sum
contains a variable, which is not in the first sum. Sum-
ming up both sums, at least the fresh variable will be left.
So they are always independent. Having n −1 independ-
ent sums and introducing the next sum containing a fresh
variable, the effect is similar. Summing up the new sum
with any tupel of old sums, at least the fresh variable will
be left. The independence is proved by recursion: One
sum is independent; and n sums are independent, because
n −1 sums are independent.

The technique solves two problems: It allows a purposeful
search for sums, rather than a plain trial and error tech-
nique, and it avoids the check for linear dependence. The
next section presents a complete algorithm to calculate
linear sums.

3 The calculation of linear sums

The input of the calculation is the cone structure of the
circuit that should be tested exhaustively. The first steps
are two simplifications, reducing the number of inputs
and reducing the number of cones (Figure 5). As in
Figure 2c, tupels of inputs which have no cone in com-
mon can − and from the point of view of hardware mini-
mization should − be linked together during test. As the
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result, the number of inputs decreases and the cone over-
lapping, i.e. the number of cones per input, increases.
The problem has been formulated as cliques covering of a
graph [7]. We did the same without optimization. The
inputs are checked two by two. If they have no cone in
common they are linked by substituting a new virtual
input for both inputs, and the procedure is continued. For
large circuits, the effect of this simplification is remark-
able. During the test the number of inputs of a 100-input
circuit with 20 cones of the size 16 (randomly input-cone
assignment, see section 4) can be reduced to about
25 40�  inputs.

To calculate the test pattern generator, cones with equal
input spans can be combined to form one cone (Figure 5).
If the first will be stimulated exhaustively, the other will
also. Having a smaller and a larger cone, where the
smaller one shares all inputs with the larger one, only the
larger cone is needed for the calculation of the test pat-
tern generator. Such a cone relation may also arise during
the reduction of inputs. In our experiments with
randomly overlapping cones, cone reduction was unim-
portant.
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Figure 5: Initial simplifications of the cone struc-
ture

The outside loop of computing the set of linear sums
initializes the number of generator variables with the
maximum cone size and increments it in the case, the
algorithm does not find a solution. However, in the first
step it finds only a solution for circuits with no more than
about 16 maximum-size cones. For circuits with substan-
tially more maximum-size cones, up to 10 and more
iterations may be necessary by our experience.

For a given number of generator variables, firstly, each
generator variable is assigned to one input. Within those
sums of single summands linear dependence can never
arise. Next, sums are assigned one after another to each
input still vacant. As discussed in the previous section,
linear dependence is avoided by introducing at least one
fresh generator variable into the array of sums of each
cone which the input is linked to.

If multiple cones are linked to the actual input, it is
sometimes impossible to introduce exactly one fresh vari-
able for each cone. The consumption of fresh variables is
greater than the reduction of the number of cone inputs to
which sums has still to be assigned. From this follows
that for most cones the number of generator variables
must be larger than the number of inputs. If a shortage is
foreseeable, the calculation is discontinued and started
again with an increased number of generator variables.
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Figure 6: The procedure of sum assignment

Aims of optimization in the process of sum assignment
are minimum test time and minimum hardware size. An
essential part of the hardware are the sum networks.
Roughly estimated, an additional summand in one of the
sums causes an overhead of an additional EXOR-gate.
So, the number of summands in each sum has to be
minimized. The size of the exhaustive test pattern genera-
tor and the test time depend upon the number of inde-
pendent generator variables. The corresponding strategy
for sum selection is to avoid a shortage of generator vari-
ables for each cone. Both aims for optimization are not
the same. In many cases a sum with a minimum number
of summands does not use generator variables most
sparingly and vice versa. By our experiments we came to
the conclusion that it is better to select sums that intro-
duce less fresh variables into the cones than those with
less summands. This strategy increases the freedom for
the remaining sums to be selected. And in the end, it
reduces the generator size.

4 Experimental evaluation

As shown in [7] the maximum cone size of the bench-
mark circuits, generally used to evaluate test techniques,
exceeds the bound of 20 30Ò  inputs. Additional control
and observation points have to be included. Of course,
these test points affect the cone structure of the bench-
marks to such an extent that one cannot compare test
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pattern generators without using the same modifications
under test.

The proposed test pattern generators have an irregular
structure. To estimate with a sufficient level of confidence
the average generator size and test time, a larger number
of examples has to be investigated. For this reason we
decided to do the evaluation with cone structures
produced by a random number generator, 100 for each
input and cone number.

Circuits with a large number of equal size cones are most
difficult for the proposed algorithm. Additional smaller
cones have no substantial effect to generator size and test
time. Only the worst case of equal size cones is docu-
mented in Table 1. Having a circuit where the cones have
different width, for an initial estimation it is enough to
concentrate on the maximum size cones.

Figure 7 shows the general structure of the test pattern
generator the values in Table 1 based upon. For the linear
sums it is assumed that each sum is produced by a sepa-
rate EXOR-tree. The number of EXOR-gates is the num-
ber of variables within the sum assigned to the corre-
sponding input minus one. In Table 1 only the average
number of EXOR-gates for the whole sum network e is

listed (average value for the test pattern generators for
100 different circuits). It has to be noted that the number
of EXOR-gates can be reduced by sharing partial sums
between different EXOR-trees, i.e. the real generators
will be a bit smaller.
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Figure 7: Assumed generator structure

The exhaustive test pattern generator should be a primi-
tive feedback shift register of length k (k-flip-flops for the
register; 1 or 3 EXOR-gates for the feedback [1]). It pro-
duces all variations of binary states except the one with
all zero. The all zero state can be included by inverting
the feedback value for the generator stages 00 0× Xβ γ,
which can be done by a NOR-gate with k −1 inputs and
an additional EXOR-gate [4]. For most generators this
extension is unnecessary. As seen in Table 1 for a larger

equal number of generator variables k
inputs  size

cones
e 16

*3
17
*1

18
*1

19
*3

20
*1

21
*1

22
*1

23
*1

24
*3

25
*1

26
*3

27
*3

28
*1

50 4
8
16
32
64
128
256

1.84
8.94
19.24
38.44
64.23
76.58
86.65

98
70
-
-
-
-
-

2
30
33
-
-
-
-

-
-

60
-
-
-
-

-
-
7
44
-
-
-

-
-
-

53
-
-
-

-
-
-
3
4
-
-

-
-
-
-

77
-
-

-
-
-
-

19
-
-

-
-
-
-
-

26
-

-
-
-
-
-

65
-

-
-
-
-
-
9
-

-
-
-
-
-
-

65

-
-
-
-
-
-

35
100 4

8
16
32
64
128
256

0.39
3.46
13.00
27.74
54.85
103.57
184.40

100
88
3
-
-
-
-

-
12
91
-
-
-
-

-
-
6
15
-
-
-

-
-
-

77
-
-
-

-
-
-
8
-
-
-

-
-
-
-

43
-
-

-
-
-
-

55
-
-

-
-
-
-
2
1
-

-
-
-
-
-

63
-

-
-
-
-
-

36
-

-
-
-
-
-
-
-

-
-
-
-
-
-

61

-
-
-
-
-
-

39
200 4

8
16
32
64
128
256

0.04
1.07
5.13
15.73
34.54
71.75
137.27

100
99
39
-
-
-
-

-
1
61
11
-
-
-

-
-
-

85
-
-
-

-
-
-
4
1
-
-

-
-
-
-

71
-
-

-
-
-
-

26
-
-

-
-
-
-
2
1
-

-
-
-
-
-

48
-

-
-
-
-
-

50
-

-
-
-
-
-
1
-

-
-
-
-
-
-
6

-
-
-
-
-
-

78

-
-
-
-
-
-

16

Table 1: Expected test time and hardware size of locally exhaustive test pattern generators using
linear sums (k - number of generator variables and flip-flops; e - average number of EXOR-gates
for the linear sums; *1/*3 - minimum number of EXOR-gates for the feedback of the shift register)
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number of equal size cones the exhaustive generator must
be at least one bit longer than the maximum cone size.
So, during the generator cycle each cone will be stimu-
lated at least two times with each pattern unequal zero.
The all zero vector is also included, but one time less
than the others.

To recapitulate, a test pattern generator consists in refer-
ence to Table 1 of :

• k edge-triggered D-flip-flops

• on average e +1 3Ø  EXOR-gates

• if k w= max 1 additional EXOR-gate, 1 NOR-gate.

The test time is t k
test = 2 .

The most important alternative test pattern generators,
providing also a locally exhaustive test, are shift register
based ones (pseudo random pattern generators or genera-
tors for contiguous input spans, see section 1). The hard-
ware size of those generators is approximately one edge-
triggered D-flip-flop per input of the circuit under test. A
measure to compare the linear sum based test pattern
generators with shift register based ones is the ration
between the number of additional needed EXOR-gates to
the number of saved flip-flops:

 r
e

k
=

−inp
(4)

It can be assumed that an EXOR-gate does not need more
area on chip than an edge-triggered flip-flop. So, up to
r ≈ 1 the sum based generators will be smaller. For
circuits with 50 inputs the economic range is about up to
50, for circuits with 100 inputs up to 100 and for circuits
with 200 inputs up to 200 equal size cones. To summa-
rize, the statistics from the calculated test pattern genera-
tors (all together for 2,100 different cone structures)
allow the rough estimation that the test pattern generators
based on linear sums are on average smaller if the num-
ber of equal size cones does not exceed the number of
inputs of the circuit under test.

5 Summary

An algorithm to compute linear sums for locally exhaus-
tive test pattern generators has been presented. A strategy
of introducing fresh variables into the set of sums for
each cone is substituted for the trial and error technique
of selecting sums and the linear dependence test. The new
algorithm is much less complex and allows the calcula-
tion of test pattern generators for large circuits without

time problems. The expectable size of the calculated test
pattern generators and the expectable test time were
examined by a large number of calculations. The experi-
ments points out the tendency that for locally exhaustive
testable circuits with no more equal-size cones than
inputs the so computed generators are smaller than shift
register based ones. So, it offers a way to reduce the hard-
ware costs of BIST solutions while performing a complete
locally exhaustive test.
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