Guardbandsin Random Testing
Gunter Kemnitz

Technische Universitat Clausthal
Institut fir Informatik
Erzstrasse 1
38678 Clausthal-Zellerfeld
Tel.: +5323 72 2070
Fax.: +5323 72 3572
gkemnitz@informatik.tu-clausthal.de

Abstract

The fault coverageof a randomtestcanbe estimatedoy fault simulation.If the simulationis
performedby anotherandomsequencéhanthoseusedundertestor a fault sampleis used,a
randomdifferencebetweenthe simulationresultandthe fault coveragehasto be considered.
The simulationresult must be larger than the fault coveragethat hasto be guaranteedThe
differenceis called guardbandlIn the paperthe distribution of the fault coverageand the
distribution of the differencehasbeenderived by the mathematicaimodel of independently
detectabldaults. Afterwardsit is correctedusing experimentatiata. The comparisorbetween
theoryandexperimenunveilsa featureof randomtest,to which no attentionhasbeenpaidin
the past. The correlationsin the fault detectionprocesscan not be ignoredin determining
guardbands. As the final result relations for guardband calculation are given.
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1 Introduction

The most important parameterof a digital testis the fault coverage.lt is the fraction of
detectablefaults from a set of assumedaults. Using random patternsas stimuli the fault
coveragedependdmainly on the numberof test patternsand lesson the test patternsitself.
However, it is a random variable.

The paperdealswith the following problem:How much fault coveragecan be guaranteedr
the fault simulationhasbeenperformedwith otherrandomlyselectednput patternsghanthose
used under test? This question is interesting in practice. Random patterns are often used in self-
testfunctions,but alsoin low costtestsystemsDefining the testonly by the numberof test
patternshasalot of advantagesverthe alternative computing,storingandprocessing large
guantity of exactlydefinedpatterng1], [2]. For thetestof a circuit underoperationthe input
patterns are not known advanceThe fault simulationwith anappropriatesampleof patterns
is the only way to estimatethe fault coverageln manyapplicationsit is not enoughto know
the averagefault coverage.The value that can be guaranteeds required.An akin situation
arises|f the fault simulationhasbeendonewith a sampleof faults. Simulationresultandfault
coveragediffer by a randomamountand a lower boundhasto be guaranteedor the fault
coverage.

The term guardbanigasbeentakenfrom analogudesting.Testinga parametere.g.avoltage,
the measured value must be better than the value that shayudiaateedy thetest[3]. The
difference the so calledguardbandis necessaryo reducethe probability that noiseand other
disruptionsduring measuringwill causethat bad deviceswill be classifiedasgood ones.The



problemwith the fault coverages akin. The fault coverageshouldnot be lower thana given
bound. Otherwise, the number of bad devices classified as good ones will be too large.

A guardbandalculationneedghe distributionof the parameteunderinvestigation.Section2
develops a mathematical model to calculate the distribution, the mean vahhe eadanceof
thefault coverageout of detectionprobabilities.BasicfeaturesarediscussedFor the variance
an upperboundhasbeenfound. Section3 describeghe guardbandoroblem.Section4 deals
with the guardbandsize, if the fault coverageis estimatedby a fault simulationwith other
random patternsthan those used under test. The necessarysize of the guardbandfor a
simulation with a fault sample will be discussed in section 5.

2 Distribution of the fault coverage

Thedetectionprobability p, (1) of afaulti is the probabilitythatthe fault will be detectedy a
single randomly selectedinput pattern. More detailed and more general explanationsthe
interested reader mdiyd in [1], [2], [4], [5]. To calculatethe detectionprobabilitiesp;(n) for
a sequence of input patterns, generally the binomial model is used. A valilbe detectedy
n input patterns if at least one of the input patterns detect the fault:

p(n)=1-(1-p 1) (1)

It is basedon the assumptiorthat real randompatternsare used.lt meansthat patternsmay
occur by chancemultiple times in the sequenceThe binomial approachis also a close
approximatiorfor a pseudo-randortest(no repetitionof patternss possible)if the testsetis
much shorter than an exhaustive {6$t Equation(1) can be simplified:

p(n)=1-e™* with g =-In(l-p(2)= p,(2) 2

p 50% 20% 10% 5% 2% 1%
g | 69,315% | 22,314% | 10,536% | 5,129% 2,020% 1,005%

For small detection probabilities it is:
pi(n)=1-e™"® (3)

In the contextof guardbanctalculationthe fault coverages a randomvariable.By chanceit
cantakevaluesbetweerzeroandone.To distinguishthe randomvariablefault coveragerom

an exactly known fault coverage, tGeeek lette§ will be used.

Now our new ideastarts.We introduceauxiliary randomvariables,one for eachfault i that
shouldbe oneif the fault is detectecandzeroif it is not detectedThe ideabehindthis is that
the fault coverage is the mean value of these auxiliary variables:

1 M
£(r)= ;> 2. (1) @
(M - number of assumed faults).
The distribution of each of the auxiliary variablegn) is:
P (n)=0)
P(i(n)=1)

1-p,(n) fault undeteciabe

p,(n)  fault deecade (5)



Their mean values are equal to the detection probabilities:

E(Z i (n)) =p,(n) (6)
The variance is:
D?(¢,(n)) = (- p,(n))Ch, (n) (7)

The following presupposeshat the faults in the circuit are detectedindependentlyof each
other.Properlyspeakingijt is not true. Many faults sharecontrol and observationconditions.
Resultingfrom that, the samelogical valuesat leastat a part of the inputsareeligible for fault
detection.On the otherhand,it would not be possibleto calculatethe distributionof the fault
coveragewithout this assumption.Additional probabilities would be neededof the kind:
probability that fault i is detectablaf fault j is (un)detectableThosedataare not available.
Therefore,first the model of independentlydetectablefaults is used. Second,the resulting
equations are verified by experiments.

Distribution

Under the assumptionof independentlydetectablefaults all variations of detectableand
undetectablefaults have to be compiled. The probability of each variation has to be
determinedFor all variationswith a certainnumberof detectabldaults the probabilitieshave
to be addedup. However,becausef the exponentialgrowth of the numberof variationsthis
approach is only good for a small number of faults.

Figure 1 showsa betteralgorithm. Taking the distributionof M =i faults andthe detection
probability of fault i +1 the distribution of M =i+1 faults is calculated. The starting
distribution is that of the auxiliary random variable for the first fy(in) with therealizations
zero and one. From this the distribution of the first and the second fault

2, (M)+2,(n) _
2

P Hwnh the reallzatlons— D{ % }

is calculated,... The Calculationtime of this algorithm grows only with the squareof the
number of faults.



Distribution for 1 to 3 faults
P(,(n)=0)=1-p,(n) P.(n) =06 | p,(n) =05 | p;(n) =06
P(E 1(n) = 1) =p, (n) 06

i 0,4 - f @1 fault
PO fori=2 oM Oyz % % m 0 2 faults
P(Ei(n) = 0) ( &..(n)= )Eﬂl p; (n) ) 0 - L 3H . 013 faults

0

P (n) =1) = P(§;-.(n) =1)Cp, (n) Distribution for 6, 14 and 26 faults
DO form=1toi-1 pi(n): 2x 0,5; 0,6; 0,7; 20,8 | %0,4: 3<0,7;
P%i (n) :L“@: 0,8; 0,9 | 0,4; 80,5; 6<0,8; 20,9
m
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Figure1: Algorithm to calculatethe distribution of the fault coveragewith exampleg&; (n) -
distribution of the fault coveragefor i faults; p;(n)- detectionprobability of fault i; m -
number of detectable faultst - number of assumed faults: number of test patterns)

The examplein Figurel showsthatthe fault coverageconvergego a normaldistributionwith
a growing numberof faults. A proof, presupposingndependentlydetectablefaults, can be
foundin [7]. Figure2 showsthe fault coverageof a largercombinationakircuit with stuck-at
faults. It is also nearly normal distributed.
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Figure2: Faultcoverageof the benchmarlkcircuit c3540[8] (resultof a fault simulationwith
1,000differentrandomsequencesjyumberof faults M = 3,605; redundanfaults areremoved
from fault list and equivalent faults aueited to one faul}

Mean value

The mean value of a suofiindependentandomvariabless the sumof the meanvaluesof the
summandsThe fault coverages the meanvalueof the auxiliary variablesZ , (n) . So, the sum

has still to be divided by the number of assumed faults.

— 1 - _ _ 1 - -nip; (1)
EEm)= ;D PN =1 S e ®
Equation(8) allowsthe following conclusiondor the averageault coverageAs for the single
detection probabilities, it convergesto one with a growing number of test patterns.The
detectionprobabilitiesin a circuit vary by someordersof magnitude As usual,the majority of
faultsis easilydetectableThey will be found with a few hundredrandompatterns.The fault
coveragegrowsfastat the beginof the test,reachingabout80%to 90%. A small fraction of
thefaultsis hardto detect.To coverthelastfew percentf faults may costanincreasean the
test length by multiple orders of magnitude.

In practice, an interestinguestionis whetherthe fault coverageor the requiredtestlengthcan
be estimatedoy a much shortertest sequenceahan thoseusedundertest. It would allow to
savea hugeamountof simulationtime. Equation(8) showsthatit is impossible For shorttest
sequenceghe growth of the fault coveragedependsalmost exclusively on the detection
probabilities of easyto detectfaults. The effect of the hard to detect faults is small in
comparisorto the variationsof the simulationresult. Not evenconclusionsaboutthe order of
magnitude of the detection probabilities for the hard to detect faults can be drawn. Without this
informationit is impossibleto predictthe requiredtestlengthfor a fault coveragehigherthan
the simulationresultor for the coverageof a muchlongertest set. The fault simulationto
estimatethe fault coveragehasto be performedwith the samenumberof test patternsas
planed for the test.

Variance

The varianceof the sum of independentandomvariablesis the sum of the variancesof the
summands. For the fault coverage is the mean value of the auxiliary vatiapigsit is:

()= 1= 3 P (P ()= s €O (e ) o

It convergeso zerowith a growing numberof faults. If the testsetis very long, the majority
of faults has detectionprobabilities close to one (nlp, >>1). The numberof summands

contributingin equation(9) to the variancebecomessmallerwith the testlengthandso also
the variance.

Without knowing the single detectionprobabilitiesan upper bound of the variancecan be
given.Whenall detectionprobabilitiesareequal,it hasa maximumfor a given meanvalueand
a given number of faults. The distributiohthe maximumis a binomialdistribution. The proof
is given in the appendix.



D2(E(n) <—EIE(E ){1- EE(n))) (10

This unequatiorallows to measurehe effect of the correlationan the fault detectionprocess.
Let us introduce a parameter

M D2 (&(n))
)1 EE(n)

Accordingto equation(10) € cannot be largerthan one for uncorrelatedaults. However, it
can exceedthe boundif interdependencies the detectionprocessexist. The following will
illustratethis. Let us assumehat the numberof faultsfor a given circuit hasbeendoubledby
listing or countingeachfault two times. This correspondso a fault setwith multiple pairs of
equivalentfaults or faults that will be detectedalwayssimultaneouslyThe trick will neither
changethe meanvalue of the fault coveragenor the variance.Only the numberof assumed
faults M doubles.And so € becomeswo times as large as for a set of independentaults.
Obviously,by a further increaseof the numberof equivalentfaults, e may becomeargerthan
one.

(1)

Usually, equivalentfaults are removedfrom the fault list before fault simulation. From each
classof equivalentfaults only oneis taken.This hasalso be donewith the fault list usedto
produceFigure 2. But there are other dependencieslhe control and observationpathsare
similar for manyfaults. So, faults require partly the sameinput patternsand will be detected
often by the samerandomlyselectedestpattern.Table1 column4 showsthe valuesof € for
the experimenin Figure2. Although, equivalencetiavebeenremovedthe numberdook asif
on averageup to 5 and more faults would havebeendetectedn eachrandomsequencavith
the same pattern.

fault simulation with all fault simulation with a fault simulation with a
3,606 stuck-at faults sample of 1,000 faults sample of 300 faults

" EEM)| o*EM)| ¢ |EEM)|[D?EM)| & |EEM)D*EMm) ¢

160 88.5%| 1.28% | 5.8| 88.2%| 1.41% 1.9 | 89.6%| 1.87% |1.1
320 93.5%| 0.88% |4.6| 93.2%| 1.04% 1.7 | 94.6%| 1.42% |1.2
800 97.6% | 0.48% | 3.5| 97.5%| 0.63% 1.6 | 98.4%| 0.76% |1.1
1,600 | 99.2%| 0.20% | 1.8| 99.2%| 0.28% 1.0 | 99.7%| 0.36% |1.2
3,200 | 99.7%| 0.08% | 0.8| 99.7% | 0.11% 0.4 199.9%| 0.11% |1.0
6,400 | 99.8%| 0.05% | 0.5| 99.8% | 0.08% 0.4 | 100% 0 --

Table1: The parametee for a completestuck-atfault setandfor two fault samplegcircuit
c3540 [8], meanvalue and variancehave been estimatedby fault simulationswith 1,000
different random sequences)

With a growing testlengthanda growing fault coveragethe interdependenciegdecreaseAll
faults with high detectionprobabilitiesare detectedalmostby eachrandomsequencef the
correspondingest length. They do not contributeto the variance.Betweenthe harderto
detect faults are probably also some interdependencieeft. But the effect of the safely
detectable faults outweighs them.



Interdependencieim the fault detectionprocessdo not only increasethe variance.They can
alsochangethe shapeof the distribution. The reasorfor it is alargegroup of faults detectable
by the sameor almostthe sameset of input patterns.Let us assumea circuit with 10 faults,
where8 faultswill be detectedalwayssimultaneouslyThus,the numberof detectabldaultsis
limited to m {0, 1, 2, 8, 9, 1G . The distribution of the fault coverageis divided in two

rangesFigure3 showsthis effectfor a real circuit with stuck-atfaults. From the positionand
the distanceof the rangest canbe concludedthat the fault group consistsof about80 faults

with a detection probability of abo®0™.
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Figure 3: Distribution of the fault coverageof the circuit c2670[8]. As far asthey havebeen

found equivalentfaults havebeenremovedfrom the fault list. Nonethelessthe resultlooks as

if one classof equivalentfaults has beenforgotten (2685 stuck-atfaults; result of a fault

simulation with 1,000 different random sequences)

3 Guardbands

Thefault coverageof atestsetis a quality parametermanufacturerguarantedor. It mustbe

at leastas large as a given lower bound FCy,, . However,the fault coverageis a random

variablewhich cantake a value betweenzeroandone by chance A lower boundcanonly be

given with a small error probabilityypically the fraction of a percent up to some percent):
PE <FC,,)<a (12

min
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Figure4: One-side interval estimation of the guaranteed fault coverage

The averagefault coveragemust be larger than the guaranteedault coverageby a certain
amountcalled guardbandG. As shownin the last section,the fault coverageis often nearly
normal distributed.The guardbandor a nomal randomvariable mustbe about2 to 4 times

larger than the standard deviation:

G=kQ/D*(E(n)) with o =d(-k) (13)
(a - error probability®(-k) - value of the standardized normal distribution).

The standardieviationof the fault coveragecanbe estimatedyy equation(10) usingthe mean
value and the parameter

D{/E(z(n)) f1- EE()) (14)
M

The larger the number of faults is the smaller can be the guardband.

The meanvalueandthe varianceof the fault coverageg (n) hasto be estimatedThis requires
a fault simulation witiM; faultsandn randompatternsTheresultof the fault simulationis the
estimatedmeanvalue of the fault coverage.lt differs from the meanvalue by a random
amount.The fault coverageitself also differs from the meanvalue by a randomamount.So,
both random differences have to be considered for the guardbignd5.

G=klg
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Figure5: Guardbandetweenthe fault coverageof a known randomsequencendthe value
that can be guaranteed for an arbitrary random sequence

4 Simulation with another random sequence

Thefault coveragewill be determinedy anotherandomsequencéhanthoseusedundertest.
The numberof randompatternsshouldbe the same n this case the simulationresultandthe
fault coveragearetwo independentandomvariableswith the samedistribution. The variance
of the sumof two independentandomvariablesis the sumof the variancesit doubles.The
standarddeviationasthe squareroot of the varianceincreasedy the factor /2 . By the same
amountthe guardbandhasto be increasedn comparisonto equation(14) wherethe mean
value has been assumed to be exactly known:

G, 22 k2 q/E(E(n)) [(i/l_ ) (19

The required guardbandcan be reducedby repeatingthe fault simulationwith z different
randomsequence®f length n. The estimatedmeanvalue becomesthe meanvalue of the
simulation results. The necessary size of the guardband reduces down to:

G, > \/E kE E1(/ E(z(n)) [(i/l_ E(E(”))) (16)

(Multiple simulation results allow also a maecuratesstimation of the variance.)




5 Simulation with a fault sample

The simulationwith a fault samplecostslesssimulationtime. In return, the varianceof the
simulationresultis higher.Using the upperbound(10), it could be assumedhat the variance

D*(¢) grows converselyproportionalto the reductionof the fault sample.The standard

deviation,/D*(€) growswith the root. The distributionbecomesroaderandflatter (Figure
6).
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Figure 6: Distribution of the fault coverageof different samplesof stuck-atfaults (circuit
c3540[8], simulation with 1,000 random sequences per fault set)

Especiallyfor large fault samplesthe guardbandsize dependsuponwhetherthe simulationis
performedwith the sameor a differentrandomsequencehanthe test.Using differentrandom
sequencessimulationresult and fault coverageare two independentandomvariables.The
variances add:

D?(¢,-&,)=D?(E,)+D?(E,) (17)

Using the upper bound for the variance, equgtlat) becomes:
g2 0
o HEE(m) e - EE(r) (19)

S

2 (e?
D? (&, Et)SEM”L



Is the fault simulationperformedby the samerandompatternsasthe test,the simulationresult
is alreadythe exactcoveragefor Ms of M faults. This fraction doesnot contributeto the
varianceof the difference.In comparisonto equation(18) the varianceof the differenceis

smaller by the factofl— M, )/M:

D€, ~8)2 Fiy - EE) L () 19

For a small fault sample M, << M the varianceof the fault coveragecanbe neglected.The
factor (1- M, )/M (19)is also close to one:

DZ(ES _Et) ~¢? E{/E(E(n)) [@'\1/" E(E(n))) (20)
Thesize of the guardband is:
6.~ K. EdE(ﬁ(n)) [%_ EEM)) -

Equation (21) gives the impressionthat the guardbandmust be increasedconversely
proportionalto the root of the numberof simulatedfaults. The real proportionsare much

better. Table 1 showsalso the meanvaluesand the variancesof the simulationwith fault

samples.The increaseof the varianceis much smaller than it could have been expected
accordingto equation(20). With the reductionof the size of the fault samplethe parameteg

also becomes smaller.

The parametek hasbeenintroducedto quantify the interdependencieis the fault detection
process. The more fault assumptionsare distributed in a given circuit, the more
interdependenciesreto be expectedandvice versa.The reasons obviously that the number
of control and observation patisdimited in a circuit. Many assumedaults mustsharecontrol
andobservatiorconditions.It meanghat similar input patternswill detectthem.The variance
doesdependesson the total numberof faults but more on the numberof groupsof similar
detectabléfaults. The numberof thosegroupsis limited by the circuit structure.Selectinga
fault samplereducesmainly the numberof similar detectabldaults within the groupsandnot
so muchthe numberof groups.So, the varianceis lesseffected.Of cause this explanationis
simplified. Further investigations are required to understand the phenomenon of
interdependences in the fault detection process better.

The parametere is a measurefor the efficiency of a fault simulation. The aim of a fault
simulationis a close prediction of the fault coverage.The costsdependon the numberof
assumedaults. A conclusionfrom this paperis alsothat a completefault simulationdoesnot
repay, exceptif it is performedwith the samepatternsas the test. The reduction of the
standard deviation is out of relation to the number of simulated fauléailssimulationwith a
fault sampleis more economic.Besidesusingthe samepatternsthanthe testis a conjob. It
providesthe exactvalue of the fault coveragedor the assumedaults. However,theseare not
the faults to be found undertest. Betweenthe fault coveragef modelledfaults and of real
faults alsoa randomdifferencehasto be consideredBut this is anotherproblemthat should
not be solved in this paper.



Summary

The fault coverageof a randomtestis a randomvariable.It is mostly, but not alwaysnormal
distributed.The meanvalueconvergesvith a growing numberof testpatternsgo 100%.But it
is not possibleto estimatethe meanvaluefor a long testsequencdy a fault simulationwith a
much shorter test sequence.

For the variancean upperboundhasbeenfound which dependsonly on the meanvalue and

the number of assumedfaults. This bound holds if all assumedfaults are detectable
independenthyof eachother.Interdependencieis the detectionprocessncreasethe variance
far beyondthis bound. So, interdependenciesan be quantified and measuredoy simulation

experiments.

A guardbandalculationhasto takeinto accounttwo randomvariables.The resultof the fault
simulationand the fault coveragediffer from the commonmeanvalue by a randomamount.
So, the variancesof both randomyvariableshaveto be added.The final resultis that the
guardband must be approximately:

Go4 15 simulaion_ result [{1 - simulaton_ result)
number_of _simulated_faults

Especially,if a fault coveragecloseto 100% hasto be guaranteedthe requiredguardbands
largein comparisorto the allowed differenceto 100%. It is, becauséhe guardbandeduces
only proportional to the root of the term (1-simulation_result).

An interestingconclusionis that the guardbandgor fault samplesdo increasemuchlessthan
converselyproportionalto the root of the numberof simulatedfaults. Reducingthe numberof
faults, the factor before the root also becomessmaller. It is becausethere are less
interdependenciem a fault samplethan in a completefault set. So, it looks to be more
efficient to perform the fault simulation farandomtestonly with a fault sampleandnot with
the whole fault set.

References

[1] lliman, R. J.: Self-testeddataflow logic: A new approachln: IEEE Designand Testof
computers, No. 4, 1985, 50-58

[2] Lombardi,F.; Sami,M. (eds):Testinganddiagnosisof VLS| andULSI. Kluwer Academic
Publishers, 1988

[3] Williams, R. H.; Hawkins,C. F.: The effectof guardbandsn errorsin productiontesting.
European Test Conf., Rotterdam, 1993, 2-7

[4] David, R.; Blanchet,G.: About randomfault detectionof combinationanetvorks. IEEE
Transaction on Computers No. 6, 1976, 659-664

[5] Cirit, M. A.: Switch level random ptern testability analysis. DAC-25, 1988, 587-590

[6] Chin, C. K.; McCluskey,E. J.: Testlengthfor pseudorandomtesting.InternationalTest
Conference, 1985, 94-9

[7] Kemnitz, G.: Self test of digital circuits: tools, designapproachand software support.
Dissertationsschrift, Dresden University of Technology, 1991 (in German)



[8] Brglez, F.; Fujiwara,H.: A neutralnetist of 10 combinatorialoenchmarkcircuits and a
targettranslatonn FORTRAN. Int. Symposiumon Circuits and Systems;SpecialSession
on ATPG and Fault Simulation, 1985

Appendix

Proof for unequatiofil0)

Let us substitute all detection probabilities by the sum of the mean value and a difference:
. 1 i
p,(nN) = E(E(n))+d, with E(§(n))=—L[» p/(n) and ¥ 6, =0
() €)=, 5 p () and 3

Inserted in(10):

D*(g(m) ==

M
The simplified unequatiori 5.2 =0 is true for all3,.
1=1



