
Serial Programming Guide
for

POSIX Operating Systems
5th Edition, 4th Revision

Copyright 1994−2004 by Michael R. Sweet

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no

Invariant Sections, no Front−Cover Texts, and no Back−Cover Texts. A copy of the license is included in
Appendix C, GNU Free Documentation License.

Table of Contents
Introduction LicenseOrganization...1

Chapter 1, Basics of Serial CommunicationsWhat Are Serial Communications?What Is RS−232?
Signal DefinitionsAsynchronous CommunicationsWhat Are Full Duplex and Half Duplex?Flow
 ControlWhat Is a Break?Synchronous CommunicationsAccessing Serial PortsSerial Port Files
Opening a Serial PortWriting Data to the PortReading Data from the PortClosing a Serial Port............1

Chapter 2, Configuring the Serial PortThe POSIX Terminal InterfaceControl OptionsLocal Options
Input OptionsOutput OptionsControl Characters..1

Chapter 3, MODEM CommunicationsWhat Is a MODEM?Communicating With a MODEM
Standard MODEM CommandsCommon MODEM Communication Problems..3

Chapter 4, Advanced Serial ProgrammingSerial Port IOCTLs Getting the Control SignalsSetting the
 Control SignalsGetting the Number of Bytes AvailableSelecting Input from a Serial PortThe
 SELECT System CallUsing the SELECT System CallUsing SELECT with the X Intrinsics Library3

Appendix A, PinoutsRS−232 PinoutsRS−422 PinoutsRS−574 (IBM PC/AT) PinoutsSGI Pinouts............4

Appendix B, ASCII Control CodesControl Codes...4

Appendix C, GNU Free Documentation License...5

Appendix D, Change HistoryEdition 5, Revision 3..6

Serial Programming Guide for POSIX Operating Systems

i

Serial Programming Guide for POSIX Operating Systems

ii

Introduction

The Serial Programming Guide for POSIX Operating Systems will teach you how to successfully, efficiently,
and portably program the serial ports on your UNIX® workstation or PC. Each chapter provides programming
examples that use the POSIX (Portable Standard for UNIX) terminal control functions and should work with
very few modifications under IRIX®, HP−UX, SunOS®, Solaris®, Digital UNIX®, Linux®, and most other
UNIX operating systems. The biggest difference between operating systems that you will find is the filenames
used for serial port device and lock files.

License

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front−Cover Texts, and no Back−Cover Texts. A copy of the license is included in
Appendix C, GNU Free Documentation License.

Organization

This guide is organized into the following chapters and appendices:

Chapter 1, Basics of Serial Programming•
Chapter 2, Configuring the Serial Port•
Chapter 3, Talking to MODEMs•
Chapter 4, Advanced Serial Programming•
Appendix A, RS−232 Pinouts•
Appendix B, ASCII Control Codes•
Appendix C, GNU Free Documentation License•
Appendix D, Change History•

Introduction 1

Serial Programming Guide for POSIX Operating Systems

2 Chapter 1, Basics of Serial Communications

Chapter 1, Basics of Serial Communications

This chapter introduces serial communications, RS−232 and other standards that are used on most computers
as well as how to access a serial port from a C program.

What Are Serial Communications?

Computers transfer information (data) one or more bits at a time. Serial refers to the transfer of data one bit at
a time. Serial communications include most network devices, keyboards, mice, MODEMs, and terminals.

When doing serial communications each word (i.e. byte or character) of data you send or receive is sent one
bit at a time. Each bit is either on or off. The terms you'll hear sometimes are mark for the on state and space
for the off state.

The speed of the serial data is most often expressed as bits−per−second ("bps") or baudot rate ("baud"). This
just represents the number of ones and zeroes that can be sent in one second. Back at the dawn of the
computer age, 300 baud was considered fast, but today computers can handle RS−232 speeds as high as
430,800 baud! When the baud rate exceeds 1,000, you'll usually see the rate shown in kilobaud, or kbps (e.g.
9.6k, 19.2k, etc). For rates above 1,000,000 that rate is shown in megabaud, or Mbps (e.g. 1.5Mbps).

When referring to serial devices or ports, they are either labeled as Data Communications Equipment ("DCE")
or Data Terminal Equipment ("DTE"). The difference between these is simple − every signal pair, like
transmit and receive, is swapped. When connecting two DTE or two DCE interfaces together, a serial
null−MODEM cable or adapter is used that swaps the signal pairs.

Chapter 1, Basics of Serial Communications 3

What Is RS−232?

RS−232 is a standard electrical interface for serial communications defined by the Electronic Industries
Association ("EIA"). RS−232 actually comes in 3 different flavors (A, B, and C) with each one defining a
different voltage range for the on and off levels. The most commonly used variety is RS−232C, which defines
a mark (on) bit as a voltage between −3V and −12V and a space (off) bit as a voltage between +3V and +12V.
The RS−232C specification says these signals can go about 25 feet (8m) before they become unusable. You
can usually send signals a bit farther than this as long as the baud is low enough.

Besides wires for incoming and outgoing data, there are others that provide timing, status, and handshaking:

Table 1 − RS−232 Pin Assignments

Pin Description Pin Description Pin Description Pin Description Pin Description

1 Earth
Ground 6 DSR − Data

Set Ready 11 Unassigned16 Secondary
RXD 21

Signal
Quality
Detect

2
TXD −
Transmitted
Data

7
GND −
Logic
Ground

12 Secondary
DCD 17 Receiver

Clock 22 Ring Detect

3
RXD −
Received
Data

8
DCD −
Data Carrier
Detect

13 Secondary
CTS 18 Unassigned23 Data Rate

Select

4
RTS −
Request To
Send

9 Reserved 14 Secondary
TXD 19 Secondary

RTS 24 Transmit
Clock

5 CTS − Clear
To Send 10 Reserved 15 Transmit

Clock 20
DTR − Data
Terminal
Ready

25 Unassigned

Two standards for serial interfaces you may also see are RS−422 and RS−574. RS−422 uses lower voltages
and differential signals to allow cable lengths up to about 1000ft (300m). RS−574 defines the 9−pin PC serial
connector and voltages.

Signal Definitions

The RS−232 standard defines some 18 different signals for serial communications. Of these, only six are
generally available in the UNIX environment.

GND − Logic Ground

Technically the logic ground is not a signal, but without it none of the other signals will operate. Basically, the
logic ground acts as a reference voltage so that the electronics know which voltages are positive or negative.

TXD − Transmitted Data

The TXD signal carries data transmitted from your workstation to the computer or device on the other end
(like a MODEM). A mark voltage is interpreted as a value of 1, while a space voltage is interpreted as a value
of 0.

Serial Programming Guide for POSIX Operating Systems

4 What Is RS−232?

http://www.eia.org
http://www.eia.org
http://www.eia.org
http://www.eia.org

RXD − Received Data

The RXD signal carries data transmitted from the computer or device on the other end to your workstation.
Like TXD, mark and space voltages are interpreted as 1 and 0, respectively.

DCD − Data Carrier Detect

The DCD signal is received from the computer or device on the other end of your serial cable. A space
voltage on this signal line indicates that the computer or device is currently connected or on line. DCD is not
always used or available.

DTR − Data Terminal Ready

The DTR signal is generated by your workstation and tells the computer or device on the other end that you
are ready (a space voltage) or not−ready (a mark voltage). DTR is usually enabled automatically whenever
you open the serial interface on the workstation.

CTS − Clear To Send

The CTS signal is received from the other end of the serial cable. A space voltage indicates that it is alright to
send more serial data from your workstation.

CTS is usually used to regulate the flow of serial data from your workstation to the other end.

RTS − Request To Send

The RTS signal is set to the space voltage by your workstation to indicate that more data is ready to be sent.

Like CTS, RTS helps to regulate the flow of data between your workstation and the computer or device on the
other end of the serial cable. Most workstations leave this signal set to the space voltage all the time.

Asynchronous Communications

For the computer to understand the serial data coming into it, it needs some way to determine where one
character ends and the next begins. This guide deals exclusively with asynchronous serial data.

In asynchronous mode the serial data line stays in the mark (1) state until a character is transmitted. A start bit
preceeds each character and is followed immediately by each bit in the character, an optional parity bit, and
one or more stop bits. The start bit is always a space (0) and tells the computer that new serial data is
available. Data can be sent or received at any time, thus the name asynchronous.

Serial Programming Guide for POSIX Operating Systems

Signal Definitions 5

Figure 1 − Asynchronous Data Transmission

The optional parity bit is a simple sum of the data bits indicating whether or not the data contains an even or
odd number of 1 bits. With even parity, the parity bit is 0 if there is an even number of 1's in the character.
With odd parity, the parity bit is 0 if there is an odd number of 1's in the data. You may also hear the terms
space parity, mark parity, and no parity. Space parity means that the parity bit is always 0, while mark parity
means the bit is always 1. No parity means that no parity bit is present or transmitted.

The remaining bits are called stop bits. There can be 1, 1.5, or 2 stop bits between characters and they always
have a value of 1. Stop bits traditionally were used to give the computer time to process the previous
character, but now only serve to synchronize the receiving computer to the incoming characters.

Asynchronous data formats are usually expressed as "8N1", "7E1", and so forth. These stand for "8 data bits,
no parity, 1 stop bit" and "7 data bits, even parity, 1 stop bit" respectively.

What Are Full Duplex and Half Duplex?

Full duplex means that the computer can send and receive data simultaneously − there are two separate data
channels (one coming in, one going out).

Half duplex means that the computer cannot send or receive data at the same time. Usually this means there is
only a single data channel to talk over. This does not mean that any of the RS−232 signals are not used.
Rather, it usually means that the communications link uses some standard other than RS−232 that does not
support full duplex operation.

Flow Control

It is often necessary to regulate the flow of data when transferring data between two serial interfaces. This can
be due to limitations in an intermediate serial communications link, one of the serial interfaces, or some
storage media. Two methods are commonly used for asynchronous data.

The first method is often called "software" flow control and uses special characters to start (XON or DC1, 021
octal) or stop (XOFF or DC3, 023 octal) the flow of data. These characters are defined in the American
Standard Code for Information Interchange ("ASCII"). While these codes are useful when transferring textual
information, they cannot be used when transferring other types of information without special programming.

The second method is called "hardware" flow control and uses the RS−232 CTS and RTS signals instead of
special characters. The receiver sets CTS to the space voltage when it is ready to receive more data and to the
mark voltage when it is not ready. Likewise, the sender sets RTS to the space voltage when it is ready to send
more data. Because hardware flow control uses a separate set of signals, it is much faster than software flow
control which needs to send or receive multiple bits of information to do the same thing. CTS/RTS flow
control is not supported by all hardware or operating systems.

What Is a Break?

Normally a receive or transmit data signal stays at the mark voltage until a new character is transferred. If the
signal is dropped to the space voltage for a long period of time, usually 1/4 to 1/2 second, then a break
condition is said to exist.

Serial Programming Guide for POSIX Operating Systems

6 Asynchronous Communications

A break is sometimes used to reset a communications line or change the operating mode of communications
hardware like a MODEM. Chapter 3, Talking to MODEMs covers these applications in more depth.

Synchronous Communications

Unlike asynchronous data, synchronous data appears as a constant stream of bits. To read the data on the line,
the computer must provide or receive a common bit clock so that both the sender and receiver are
synchronized.

Even with this synchronization, the computer must mark the beginning of the data somehow. The most
common way of doing this is to use a data packet protocol like Serial Data Link Control ("SDLC") or
High−Speed Data Link Control ("HDLC").

Each protocol defines certain bit sequences to represent the beginning and end of a data packet. Each also
defines a bit sequence that is used when there is no data. These bit sequences allow the computer to see the
beginning of a data packet.

Because synchronous protocols do not use per−character synchronization bits they typically provide at least a
25% improvement in performance over asynchronous communications and are suitable for remote networking
and configurations with more than two serial interfaces.

Despite the speed advantages of synchronous communications, most RS−232 hardware does not support it
due to the extra hardware and software required.

Accessing Serial Ports

Like all devices, UNIX provides access to serial ports via device files. To access a serial port you simply open
the corresponding device file.

Serial Port Files

Each serial port on a UNIX system has one or more device files (files in the /dev directory) associated with
it:

Table 2 − Serial Port Device Files

System Port 1 Port 2
IRIX® /dev/ttyf1 /dev/ttyf2
HP−UX /dev/tty1p0/dev/tty2p0
Solaris®/SunOS®/dev/ttya /dev/ttyb
Linux® /dev/ttyS0 /dev/ttyS1
Digital UNIX® /dev/tty01 /dev/tty02

Opening a Serial Port

Since a serial port is a file, the open(2) function is used to access it. The one hitch with UNIX is that device
files are usually not accessable by normal users. Workarounds include changing the access permissions to the
file(s) in question, running your program as the super−user (root), or making your program set−userid so that
it runs as the owner of the device file (not recommended for obvious security reasons...)

For now we'll assume that the file is accessable by all users. The code to open serial port 1 on a PC running
Linux is show in Listing 1.

Serial Programming Guide for POSIX Operating Systems

What Is a Break? 7

Listing 1 − Opening a serial port.

 #include <stdio.h> /* Standard input/output definitions */
 #include <string.h> /* String function definitions */
 #include <unistd.h> /* UNIX standard function definitions */
 #include <fcntl.h> /* File control definitions */
 #include <errno.h> /* Error number definitions */
 #include <termios.h> /* POSIX terminal control definitions */

 /*
 * 'open_port()' − Open serial port 1.
 *
 * Returns the file descriptor on success or −1 on error.
 */

 int
 open_port(void)
 {
 int fd; /* File descriptor for the port */

 fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY);
 if (fd == −1)
 {
 /*
 * Could not open the port.
 */

 perror("open_port: Unable to open /dev/ttyS0 − ");
 }
 else
 fcntl(fd, F_SETFL, 0);

 return (fd);
 }

Other systems would require the corresponding device file name, but otherwise the code is the same.

Open Options

You'll notice that when we opened the device file we used two other flags along with the read+write mode:

 fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY);

The O_NOCTTY flag tells UNIX that this program doesn't want to be the "controlling terminal" for that port.
If you don't specify this then any input (such as keyboard abort signals and so forth) will affect your process.
Programs like getty(1M/8) use this feature when starting the login process, but normally a user program does
not want this behavior.

The O_NDELAY flag tells UNIX that this program doesn't care what state the DCD signal line is in − whether
the other end of the port is up and running. If you do not specify this flag, your process will be put to sleep
until the DCD signal line is the space voltage.

Writing Data to the Port

Writing data to the port is easy − just use the write(2) system call to send data it:

 n = write(fd, "ATZ\r", 4);
 if (n < 0)
 fputs("write() of 4 bytes failed!\n", stderr);

Serial Programming Guide for POSIX Operating Systems

8 Opening a Serial Port

The write function returns the number of bytes sent or −1 if an error occurred. Usually the only error you'll
run into is EIO when a MODEM or data link drops the Data Carrier Detect (DCD) line. This condition will
persist until you close the port.

Reading Data from the Port

Reading data from a port is a little trickier. When you operate the port in raw data mode, each read(2) system
call will return the number of characters that are actually available in the serial input buffers. If no characters
are available, the call will block (wait) until characters come in, an interval timer expires, or an error occurs.
The read function can be made to return immediately by doing the following:

 fcntl(fd, F_SETFL, FNDELAY);

The FNDELAY option causes the read function to return 0 if no characters are available on the port. To restore
normal (blocking) behavior, call fcntl() without the FNDELAY option:

 fcntl(fd, F_SETFL, 0);

This is also used after opening a serial port with the O_NDELAY option.

Closing a Serial Port

To close the serial port, just use the close system call:

 close(fd);

Closing a serial port will also usually set the DTR signal low which causes most MODEMs to hang up.

Serial Programming Guide for POSIX Operating Systems

Writing Data to the Port 9

Serial Programming Guide for POSIX Operating Systems

10 Chapter 2, Configuring the Serial Port

Chapter 2, Configuring the Serial Port

This chapter discusses how to configure a serial port from C using the POSIX termios interface.

The POSIX Terminal Interface

Most systems support the POSIX terminal (serial) interface for changing parameters such as baud rate,
character size, and so on. The first thing you need to do is include the file <termios.h>; this defines the
terminal control structure as well as the POSIX control functions.

The two most important POSIX functions are tcgetattr(3) and tcsetattr(3). These get and set terminal
attributes, respectively; you provide a pointer to a termios structure that contains all of the serial options
available:

Table 3 − Termios Structure Members

Member Description
c_cflag Control options
c_lflag Line options
c_iflag Input options
c_oflag Output options
c_cc Control characters
c_ispeed Input baud (new interface)
c_ospeed Output baud (new interface)

Chapter 2, Configuring the Serial Port 11

Control Options

The c_cflag member controls the baud rate, number of data bits, parity, stop bits, and hardware flow control.
There are constants for all of the supported configurations.

Table 4 − Constants for the c_cflag Member

Constant Description
CBAUD Bit mask for baud rate
B0 0 baud (drop DTR)
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud
B57600 57,600 baud
B76800 76,800 baud
B115200 115,200 baud
EXTA External rate clock
EXTB External rate clock
CSIZE Bit mask for data bits
CS5 5 data bits
CS6 6 data bits
CS7 7 data bits
CS8 8 data bits
CSTOPB 2 stop bits (1 otherwise)
CREAD Enable receiver
PARENB Enable parity bit
PARODD Use odd parity instead of even
HUPCL Hangup (drop DTR) on last close

CLOCAL Local line − do not change "owner"
of port

LOBLK Block job control output
CNEW_RTSCTS
CRTSCTS

Enable hardware flow control (not
supported on all platforms)

Serial Programming Guide for POSIX Operating Systems

12 Control Options

The c_cflag member contains two options that should always be enabled, CLOCAL and CREAD. These will
ensure that your program does not become the 'owner' of the port subject to sporatic job control and hangup
signals, and also that the serial interface driver will read incoming data bytes.

The baud rate constants (CBAUD, B9600, etc.) are used for older interfaces that lack the c_ispeed and
c_ospeed members. See the next section for information on the POSIX functions used to set the baud rate.

Never initialize the c_cflag (or any other flag) member directly; you should always use the bitwise AND, OR,
and NOT operators to set or clear bits in the members. Different operating system versions (and even patches)
can and do use the bits differently, so using the bitwise operators will prevent you from clobbering a bit flag
that is needed in a newer serial driver.

Setting the Baud Rate

The baud rate is stored in different places depending on the operating system. Older interfaces store the baud
rate in the c_cflag member using one of the baud rate constants in table 4, while newer implementations
provide the c_ispeed and c_ospeed members that contain the actual baud rate value.

The cfsetospeed(3) and cfsetispeed(3) functions are provided to set the baud rate in the termios structure
regardless of the underlying operating system interface. Typically you'd use the code in Listing 2 to set the
baud rate.

Listing 2 − Setting the baud rate.

 struct termios options;

 /*
 * Get the current options for the port...
 */

 tcgetattr(fd, &options);

 /*
 * Set the baud rates to 19200...
 */

 cfsetispeed(&options, B19200);
 cfsetospeed(&options, B19200);

 /*
 * Enable the receiver and set local mode...
 */

 options.c_cflag |= (CLOCAL | CREAD);

 /*
 * Set the new options for the port...
 */

 tcsetattr(fd, TCSANOW, &options);

The tcgetattr(3) function fills the termios structure you provide with the current serial port configuration.
After we set the baud rates and enable local mode and serial data receipt, we select the new configuration
using tcsetattr(3). The TCSANOW constant specifies that all changes should occur immediately without
waiting for output data to finish sending or input data to finish receiving. There are other constants to wait for
input and output to finish or to flush the input and output buffers.

Most systems do not support different input and output speeds, so be sure to set both to the same value for
maximum portability.

Serial Programming Guide for POSIX Operating Systems

Control Options 13

Table 5 − Constants for tcsetattr

Constant Description

TCSANOW Make changes now without waiting for
data to complete

TCSADRAIN Wait until everything has been
transmitted

TCSAFLUSHFlush input and output buffers and
make the change

Setting the Character Size

Unlike the baud rate, there is no convienience function to set the character size. Instead you must do a little
bitmasking to set things up. The character size is specified in bits:

 options.c_cflag &= ~CSIZE; /* Mask the character size bits */
 options.c_cflag |= CS8; /* Select 8 data bits */

Setting Parity Checking

Like the character size you must manually set the parity enable and parity type bits. UNIX serial drivers
support even, odd, and no parity bit generation. Space parity can be simulated with clever coding.

No parity (8N1):

options.c_cflag &= ~PARENB
options.c_cflag &= ~CSTOPB
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS8;

•

Even parity (7E1):

options.c_cflag |= PARENB
options.c_cflag &= ~PARODD
options.c_cflag &= ~CSTOPB
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS7;

•

Odd parity (7O1):

options.c_cflag |= PARENB
options.c_cflag |= PARODD
options.c_cflag &= ~CSTOPB
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS7;

•

Space parity is setup the same as no parity (7S1):

options.c_cflag &= ~PARENB
options.c_cflag &= ~CSTOPB
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS8;

•

Serial Programming Guide for POSIX Operating Systems

14 Control Options

Setting Hardware Flow Control

Some versions of UNIX support hardware flow control using the CTS (Clear To Send) and RTS (Request To
Send) signal lines. If the CNEW_RTSCTS or CRTSCTS constants are defined on your system then hardware
flow control is probably supported. Do the following to enable hardware flow control:

 options.c_cflag |= CNEW_RTSCTS; /* Also called CRTSCTS */

Similarly, to disable hardware flow control:

 options.c_cflag &= ~CNEW_RTSCTS;

Local Options

The local modes member c_lflag controls how input characters are managed by the serial driver. In general
you will configure the c_lflag member for canonical or raw input.

Table 6 − Constants for the c_lflag Member

Constant Description

ISIG Enable SIGINTR, SIGSUSP,
SIGDSUSP, and SIGQUIT signals

ICANON Enable canonical input (else raw)

XCASE Map uppercase \lowercase
(obsolete)

ECHO Enable echoing of input characters
ECHOE Echo erase character as BS−SP−BS
ECHOK Echo NL after kill character
ECHONL Echo NL

NOFLSH Disable flushing of input buffers
after interrupt or quit characters

IEXTEN Enable extended functions

ECHOCTL Echo control characters as ^char
and delete as ~?

ECHOPRT Echo erased character as character
erased

ECHOKE BS−SP−BS entire line on line kill
FLUSHO Output being flushed

PENDIN Retype pending input at next read
or input char

TOSTOP Send SIGTTOU for background
output

Choosing Canonical Input

Canonical input is line−oriented. Input characters are put into a buffer which can be edited interactively by the
user until a CR (carriage return) or LF (line feed) character is received.

When selecting this mode you normally select the ICANON, ECHO, and ECHOE options:

 options.c_lflag |= (ICANON | ECHO | ECHOE);

Serial Programming Guide for POSIX Operating Systems

Control Options 15

Choosing Raw Input

Raw input is unprocessed. Input characters are passed through exactly as they are received, when they are
received. Generally you'll deselect the ICANON, ECHO, ECHOE, and ISIG options when using raw input:

 options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);

A Note About Input Echo

Never enable input echo (ECHO, ECHOE) when sending commands to a MODEM or other computer that is
echoing characters, as you will generate a feedback loop between the two serial interfaces!

Input Options

The input modes member c_iflag controls any input processing that is done to characters received on the port.
Like the c_cflag field, the final value stored in c_iflag is the bitwise OR of the desired options.

Table 7 − Constants for the c_iflag Member

Constant Description
INPCK Enable parity check
IGNPAR Ignore parity errors
PARMRK Mark parity errors
ISTRIP Strip parity bits
IXON Enable software flow control (outgoing)
IXOFF Enable software flow control (incoming)
IXANY Allow any character to start flow again
IGNBRK Ignore break condition

BRKINT Send a SIGINT when a break condition is
detected

INLCR Map NL to CR
IGNCR Ignore CR
ICRNL Map CR to NL
IUCLC Map uppercase to lowercase
IMAXBEL Echo BEL on input line too long

Setting Input Parity Options

You should enable input parity checking when you have enabled parity in the c_cflag member (PARENB).
The revelant constants for input parity checking are INPCK, IGNPAR, PARMRK, and ISTRIP. Generally you
will select INPCK and ISTRIP to enable checking and stripping of the parity bit:

 options.c_iflag |= (INPCK | ISTRIP);

IGNPAR is a somewhat dangerous option that tells the serial driver to ignore parity errors and pass the
incoming data through as if no errors had occurred. This can be useful for testing the quality of a
communications link, but in general is not used for practical reasons.

PARMRK causes parity errors to be 'marked' in the input stream using special characters. If IGNPAR is
enabled, a NUL character (000 octal) is sent to your program before every character with a parity error.
Otherwise, a DEL (177 octal) and NUL character is sent along with the bad character.

Serial Programming Guide for POSIX Operating Systems

16 Local Options

Setting Software Flow Control

Software flow control is enabled using the IXON, IXOFF, and IXANY constants:

 options.c_iflag |= (IXON | IXOFF | IXANY);

To disable software flow control simply mask those bits:

 options.c_iflag &= ~(IXON | IXOFF | IXANY);

The XON (start data) and XOFF (stop data) characters are defined in the c_cc array described below.

Serial Programming Guide for POSIX Operating Systems

Input Options 17

Output Options

The c_oflag member contains output filtering options. Like the input modes, you can select processed or raw
data output.

Table 8 − Constants for the c_oflag Member

Constant Description
OPOST Postprocess output (not set = raw output)
OLCUC Map lowercase to uppercase
ONLCR Map NL to CR−NL
OCRNL Map CR to NL
NOCR No CR output at column 0
ONLRET NL performs CR function
OFILL Use fill characters for delay
OFDEL Fill character is DEL
NLDLY Mask for delay time needed between lines
NL0 No delay for NLs

NL1 Delay further output after newline for 100
milliseconds

CRDLY Mask for delay time needed to return
carriage to left column

CR0 No delay for CRs

CR1 Delay after CRs depending on current
column position

CR2 Delay 100 milliseconds after sending CRs
CR3 Delay 150 milliseconds after sending CRs
TABDLY Mask for delay time needed after TABs
TAB0 No delay for TABs

TAB1 Delay after TABs depending on current
column position

TAB2 Delay 100 milliseconds after sending
TABs

TAB3 Expand TAB characters to spaces
BSDLY Mask for delay time needed after BSs
BS0 No delay for BSs
BS1 Delay 50 milliseconds after sending BSs
VTDLY Mask for delay time needed after VTs
VT0 No delay for VTs
VT1 Delay 2 seconds after sending VTs
FFDLY Mask for delay time needed after FFs
FF0 No delay for FFs
FF1 Delay 2 seconds after sending FFs

Serial Programming Guide for POSIX Operating Systems

18 Output Options

Choosing Processed Output

Processed output is selected by setting the OPOST option in the c_oflag member:

 options.c_oflag |= OPOST;

Of all the different options, you will only probably use the ONLCR option which maps newlines into CR−LF
pairs. The rest of the output options are primarily historic and date back to the time when line printers and
terminals could not keep up with the serial data stream!

Choosing Raw Output

Raw output is selected by resetting the OPOST option in the c_oflag member:

 options.c_oflag &= ~OPOST;

When the OPOST option is disabled, all other option bits in c_oflag are ignored.

Control Characters

The c_cc character array contains control character definitions as well as timeout parameters. Constants are
defined for every element of this array.

Table 9 − Control Characters in the c_cc Member

Constant Description Key
VINTR Interrupt CTRL−C
VQUIT Quit CTRL−Z
VERASE Erase Backspace (BS)
VKILL Kill−line CTRL−U
VEOF End−of−file CTRL−D
VEOL End−of−line Carriage return (CR)
VEOL2 Second end−of−line Line feed (LF)
VMIN Minimum number of characters to read−
VSTART Start flow CTRL−Q (XON)
VSTOP Stop flow CTRL−S (XOFF)
VTIME Time to wait for data (tenths of seconds)−

Setting Software Flow Control Characters

The VSTART and VSTOP elements of the c_cc array contain the characters used for software flow control.
Normally they should be set to DC1 (021 octal) and DC3 (023 octal) which represent the ASCII standard
XON and XOFF characters.

Setting Read Timeouts

UNIX serial interface drivers provide the ability to specify character and packet timeouts. Two elements of
the c_cc array are used for timeouts: VMIN and VTIME. Timeouts are ignored in canonical input mode or
when the NDELAY option is set on the file via open or fcntl.

VMIN specifies the minimum number of characters to read. If it is set to 0, then the VTIME value specifies the
time to wait for every character read. Note that this does not mean that a read call for N bytes will wait for N
characters to come in. Rather, the timeout will apply to the first character and the read call will return the

Serial Programming Guide for POSIX Operating Systems

Output Options 19

number of characters immediately available (up to the number you request).

If VMIN is non−zero, VTIME specifies the time to wait for the first character read. If a character is read within
the time given, any read will block (wait) until all VMIN characters are read. That is, once the first character is
read, the serial interface driver expects to receive an entire packet of characters (VMIN bytes total). If no
character is read within the time allowed, then the call to read returns 0. This method allows you to tell the
serial driver you need exactly N bytes and any read call will return 0 or N bytes. However, the timeout only
applies to the first character read, so if for some reason the driver misses one character inside the N byte
packet then the read call could block forever waiting for additional input characters.

VTIME specifies the amount of time to wait for incoming characters in tenths of seconds. If VTIME is set to 0
(the default), reads will block (wait) indefinitely unless the NDELAY option is set on the port with open or
fcntl.

Serial Programming Guide for POSIX Operating Systems

20 Control Characters

Chapter 3, MODEM Communications

This chapter covers the basics of dialup telephone Modulator/Demodulator (MODEM) communications.
Examples are provided for MODEMs that use the defacto standard "AT" command set.

What Is a MODEM?

MODEMs are devices that modulate serial data into frequencies that can be transferred over an analog data
link such as a telephone line or cable TV connection. A standard telephone MODEM converts serial data into
tones that can be passed over the phone lines; because of the speed and complexity of the conversion these
tones sound more like loud screeching if you listen to them.

Telephone MODEMs are available today that can transfer data across a telephone line at nearly 53,000 bits
per second, or 53kbps. In addition, most MODEMs use data compression technology that can increase the bit
rate to well over 100kbps on some types of data.

Communicating With a MODEM

The first step in communicating with a MODEM is to open and configure the port for raw input as shown in
Listing 3.

Chapter 3, MODEM Communications 21

Listing 3 − Configuring the port for raw input.

 int fd;
 struct termios options;

 /* open the port */
 fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY);
 fcntl(fd, F_SETFL, 0);

 /* get the current options */
 tcgetattr(fd, &options);

 /* set raw input, 1 second timeout */
 options.c_cflag |= (CLOCAL | CREAD);
 options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
 options.c_oflag &= ~OPOST;
 options.c_cc[VMIN] = 0;
 options.c_cc[VTIME] = 10;

 /* set the options */
 tcsetattr(fd, TCSANOW, &options);

Next you need to establish communications with the MODEM. The best way to do this is by sending the "AT"
command to the MODEM. This also allows smart MODEMs to detect the baud you are using. When the
MODEM is connected correctly and powered on it will respond with the response "OK".

Listing 4 − Initializing the MODEM.

 int /* O − 0 = MODEM ok, −1 = MODEM bad */
 init_modem(int fd) /* I − Serial port file */
 {
 char buffer[255]; /* Input buffer */
 char *bufptr; /* Current char in buffer */
 int nbytes; /* Number of bytes read */
 int tries; /* Number of tries so far */

 for (tries = 0; tries < 3; tries ++)
 {
 /* send an AT command followed by a CR */
 if (write(fd, "AT\r", 3) < 3)
 continue;

 /* read characters into our string buffer until we get a CR or NL */
 bufptr = buffer;
 while ((nbytes = read(fd, bufptr, buffer + sizeof(buffer) − bufptr − 1)) > 0)
 {
 bufptr += nbytes;
 if (bufptr[−1] == '\n' || bufptr[−1] == '\r')
 break;
 }

 /* nul terminate the string and see if we got an OK response */
 *bufptr = '\0';

 if (strncmp(buffer, "OK", 2) == 0)
 return (0);
 }

 return (−1);
 }

Serial Programming Guide for POSIX Operating Systems

22 Communicating With a MODEM

Standard MODEM Commands

Most MODEMs support the "AT" command set, so called because each command starts with the "AT"
characters. Each command is sent with the "AT" characters starting in the first column followed by the
specific command and a carriage return (CR, 015 octal). After processing the command the MODEM will
reply with one of several textual messages depending on the command.

ATD − Dial A Number

The ATD command dials the specified number. In addition to numbers and dashes you can specify tone ("T")
or pulse ("P") dialing, pause for one second (","), and wait for a dialtone ("W"):

 ATDT 555−1212
 ATDT 18008008008W1234,1,1234
 ATD T555−1212WP1234

The MODEM will reply with one of the following messages:

 NO DIALTONE
 BUSY
 NO CARRIER
 CONNECT
 CONNECT baud

ATH − Hang Up

The ATH command causes the MODEM to hang up. Since the MODEM must be in "command" mode you
probably won't use it during a normal phone call.

Most MODEMs will also hang up if DTR is dropped; you can do this by setting the baud to 0 for at least 1
second. Dropping DTR also returns the MODEM to command mode.

After a successful hang up the MODEM will reply with "NO CARRIER". If the MODEM is still connected
the "CONNECT" or "CONNECT baud" message will be sent.

ATZ − Reset MODEM

The ATZ command resets the MODEM. The MODEM will reply with the string "OK".

Common MODEM Communication Problems

First and foremost, don't forget to disable input echoing. Input echoing will cause a feedback loop between
the MODEM and computer.

Second, when sending MODEM commands you must terminate them with a carriage return (CR) and not a
newline (NL). The C character constant for CR is "\r".

Finally, when dealing with a MODEM make sure you use a baud that the MODEM supports. While many
MODEMs do auto−baud detection, some have limits (19.2kbps is common on older MODEMs) that you must
observe.

Serial Programming Guide for POSIX Operating Systems

Standard MODEM Commands 23

Serial Programming Guide for POSIX Operating Systems

24 Chapter 4, Advanced Serial Programming

Chapter 4, Advanced Serial Programming

This chapter covers advanced serial programming techniques using the ioctl(2) and select(2) system calls.

Serial Port IOCTLs

In Chapter 2, Configuring the Serial Port we used the tcgetattr and tcsetattr functions to configure the serial
port. Under UNIX these functions use the ioctl(2) system call to do their magic.

The ioctl system call takes three arguments:

 int ioctl(int fd, int request, ...);

The fd argument specifies the serial port file descriptor. The request argument is a constant defined in the
<termios.h> header file and is typically one of the constants listed in Table 10.

Chapter 4, Advanced Serial Programming 25

Table 10 − IOCTL Requests for Serial Ports

Request Description POSIX Function

TCGETS Gets the current
serial port settings. tcgetattr

TCSETS
Sets the serial port
settings
immediately.

tcsetattr(fd, TCSANOW, &options)

TCSETSF

Sets the serial port
settings after
flushing the input
and output buffers.

tcsetattr(fd, TCSAFLUSH, &options)

TCSETSW

Sets the serial port
settings after
allowing the input
and output buffers to
drain/empty.

tcsetattr(fd, TCSADRAIN, &options)

TCSBRK Sends a break for
the given time. tcsendbreak, tcdrain

TCXONC Controls software
flow control. tcflow

TCFLSH Flushes the input
and/or output queue.tcflush

TIOCMGET Returns the state of
the "MODEM" bits. None

TIOCMSET Sets the state of the
"MODEM" bits. None

FIONREAD
Returns the number
of bytes in the input
buffer.

None

Getting the Control Signals

The TIOCMGET ioctl gets the current "MODEM" status bits, which consist of all of the RS−232 signal lines
except RXD and TXD, listed in Table 11.

To get the status bits, call ioctl with a pointer to an integer to hold the bits, as shown in Listing 5.

Listing 5 − Getting the MODEM status bits.

 #include <unistd.h>
 #include <termios.h>

 int fd;
 int status;

 ioctl(fd, TIOCMGET, &status);

Serial Programming Guide for POSIX Operating Systems

26 Serial Port IOCTLs

Table 11 − Control Signal Constants

Constant Description
TIOCM_LE DSR (data set ready/line enable)
TIOCM_DTR DTR (data terminal ready)
TIOCM_RTS RTS (request to send)
TIOCM_ST Secondary TXD (transmit)
TIOCM_SR Secondary RXD (receive)
TIOCM_CTS CTS (clear to send)
TIOCM_CAR DCD (data carrier detect)
TIOCM_CD Synonym for TIOCM_CAR
TIOCM_RNG RNG (ring)
TIOCM_RI Synonym for TIOCM_RNG
TIOCM_DSR DSR (data set ready)

Setting the Control Signals

The TIOCMSET ioctl sets the "MODEM" status bits defined above. To drop the DTR signal you can use the
code in Listing 6.

Listing 6 − Dropping DTR with the TIOCMSET ioctl.

 #include <unistd.h>
 #include <termios.h>

 int fd;
 int status;

 ioctl(fd, TIOCMGET, &status);

 status &= ~TIOCM_DTR;

 ioctl(fd, TIOCMSET, &status);

The bits that can be set depend on the operating system, driver, and modes in use. Consult your operating
system documentation for more information.

Getting the Number of Bytes Available

The FIONREAD ioctl gets the number of bytes in the serial port input buffer. As with TIOCMGET you pass in
a pointer to an integer to hold the number of bytes, as shown in Listing 7.

Listing 7 − Getting the number of bytes in the input buffer.

 #include <unistd.h>
 #include <termios.h>

 int fd;
 int bytes;

 ioctl(fd, FIONREAD, &bytes);

This can be useful when polling a serial port for data, as your program can determine the number of bytes in
the input buffer before attempting a read.

Serial Programming Guide for POSIX Operating Systems

Getting the Control Signals 27

Selecting Input from a Serial Port

While simple applications can poll or wait on data coming from the serial port, most applications are not
simple and need to handle input from multiple sources.

UNIX provides this capability through the select(2) system call. This system call allows your program to
check for input, output, or error conditions on one or more file descriptors. The file descriptors can point to
serial ports, regular files, other devices, pipes, or sockets. You can poll to check for pending input, wait for
input indefinitely, or timeout after a specific amount of time, making the select system call extremely flexible.

Most GUI Toolkits provide an interface to select; we will discuss the X Intrinsics ("Xt") library later in this
chapter.

The SELECT System Call

The select system call accepts 5 arguments:

 int select(int max_fd, fd_set *input, fd_set *output, fd_set *error,
 struct timeval *timeout);

The max_fd argument specifies the highest numbered file descriptor in the input, output, and error sets. The
input, output, and error arguments specify sets of file descriptors for pending input, output, or error
conditions; specify NULL to disable monitoring for the corresponding condition. These sets are initialized
using three macros:

 FD_ZERO(fd_set);
 FD_SET(fd, fd_set);
 FD_CLR(fd, fd_set);

The FD_ZERO macro clears the set entirely. The FD_SET and FD_CLR macros add and remove a file
descriptor from the set, respectively.

The timeout argument specifies a timeout value which consists of seconds (timeout.tv_sec) and microseconds
(timeout.tv_usec). To poll one or more file descriptors, set the seconds and microseconds to zero. To wait
indefinitely specify NULL for the timeout pointer.

The select system call returns the number of file descriptors that have a pending condition, or −1 if there was
an error.

Using the SELECT System Call

Suppose we are reading data from a serial port and a socket. We want to check for input from either file
descriptor, but want to notify the user if no data is seen within 10 seconds. To do this we'll need to use the
select system call, as shown in Listing 8.

Serial Programming Guide for POSIX Operating Systems

28 Selecting Input from a Serial Port

Listing 8 − Using SELECT to process input from more than one source.

 #include <unistd.h>
 #include <sys/types.h>
 #include <sys/time.h>
 #include <sys/select.h>

 int n;
 int socket;
 int fd;
 int max_fd;
 fd_set input;
 struct timeval timeout;

 /* Initialize the input set */
 FD_ZERO(input);
 FD_SET(fd, input);
 FD_SET(socket, input);

 max_fd = (socket > fd ? socket : fd) + 1;

 /* Initialize the timeout structure */
 timeout.tv_sec = 10;
 timeout.tv_usec = 0;

 /* Do the select */
 n = select(max_fd, &input, NULL, NULL, &timeout);

 /* See if there was an error */
 if (n < 0)
 perror("select failed");
 else if (n == 0)
 puts("TIMEOUT");
 else
 {
 /* We have input */
 if (FD_ISSET(fd, input))
 process_fd();
 if (FD_ISSET(socket, input))
 process_socket();
 }

You'll notice that we first check the return value of the select system call. Values of 0 and −1 yield the
appropriate warning and error messages. Values greater than 0 mean that we have data pending on one or
more file descriptors.

To determine which file descriptor(s) have pending input, we use the FD_ISSET macro to test the input set for
each file descriptor. If the file descriptor flag is set then the condition exists (input pending in this case) and
we need to do something.

Using SELECT with the X Intrinsics Library

The X Intrinsics library provides an interface to the select system call via the XtAppAddInput(3x) and
XtAppRemoveInput(3x) functions:

int XtAppAddInput(XtAppContext context, int fd, int mask,
 XtInputProc proc, XtPointer data);
void XtAppRemoveInput(XtAppContext context, int input);

The select system call is used internally to implement timeouts, work procedures, and check for input from the
X server. These functions can be used with any Xt−based toolkit including Xaw, Lesstif, and Motif.

Serial Programming Guide for POSIX Operating Systems

Using the SELECT System Call 29

The proc argument to XtAppAddInput specifies the function to call when the selected condition (e.g. input
available) exists on the file descriptor. In the previous example you could specify the process_fd or
process_socket functions.

Because Xt limits your access to the select system call, you'll need to implement timeouts through another
mechanism, probably via XtAppAddTimeout(3x).

Serial Programming Guide for POSIX Operating Systems

30 Using SELECT with the X Intrinsics Library

Appendix A, Pinouts

This appendix provides pinout information for many of the common serial ports you will find.

Appendix A, Pinouts 31

RS−232 Pinouts

RS−232 comes in three flavors (A, B, C) and uses a 25−pin D−Sub connector:

Figure 2 − RS−232 Connector

Table 12 − RS−232 Signals

Pin Description Pin Description
1 Earth Ground 14 Secondary TXD
2 TXD − Transmitted Data 15 Transmit Clock
3 RXD − Received Data 16 Secondary RXD
4 RTS − Request To Send 17 Receiver Clock
5 CTS − Clear To Send 18 Unassigned
6 DSR − Data Set Ready 19 Secondary RTS
7 GND − Logic Ground 20 DTR − Data Terminal Ready
8 DCD − Data Carrier Detect21 Signal Quality Detect
9 Reserved 22 Ring Detect
10 Reserved 23 Data Rate Select
11 Unassigned 24 Transmit Clock
12 Secondary DCD 25 Unassigned
13 Secondary CTS

Serial Programming Guide for POSIX Operating Systems

32 RS−232 Pinouts

RS−422 Pinouts

RS−422 also uses a 25−pin D−Sub connector, but with differential signals:

Figure 3 − RS−422 Connector

Table 13 − RS−422 Signals

Pin Description Pin Description
1 Earth Ground 14 TXD+
2 TXD− − Transmitted Data 15 Transmit Clock−
3 RXD− − Received Data 16 RXD+
4 RTS− − Request To Send 17 Receiver Clock−
5 CTS− − Clear To Send 18 Unassigned
6 DSR − Data Set Ready 19 RTS+
7 GND − Logic Ground 20 DTR− − Data Terminal Ready
8 DCD− − Data Carrier Detect21 Signal Quality Detect
9 Reserved 22 Unassigned
10 Reserved 23 DTR+
11 Unassigned 24 Transmit Clock+
12 DCD+ 25 Receiver Clock+
13 CTS+

RS−574 (IBM PC/AT) Pinouts

The RS−574 interface is used exclusively by PC manufacturers and uses a 9−pin male D−Sub connector:

Figure 4 − RS−574 Connector

Table 14 − RS−574 (IBM PC/AT) Signals

Pin Description Pin Description
1 DCD − Data Carrier Detect 6 Data Set Ready
2 RXD − Received Data 7 RTS − Request To Send
3 TXD − Transmitted Data 8 CTS − Clear To Send
4 DTR − Data Terminal Ready9 Ring Detect
5 GND − Logic Ground

Serial Programming Guide for POSIX Operating Systems

RS−422 Pinouts 33

SGI Pinouts

Older SGI equipment uses a 9−pin female D−Sub connector. Unlike RS−574, the SGI pinouts nearly match
those of RS−232:

Figure 5 − SGI 9−Pin Connector

Table 15 − SGI 9−Pin DSUB Signals

Pin Description Pin Description
1 Earth Ground 6 DSR − Data Set Ready
2 TXD − Transmitted Data7 GND − Logic Ground
3 RXD − Received Data 8 DCD − Data Carrier Detect
4 RTS − Request To Send9 DTR − Data Terminal Ready
5 CTS − Clear To Send

The SGI Indigo, Indigo2, and Indy workstations use the Apple 8−pin MiniDIN connector for their serial ports:

Figure 6 − SGI 8−Pin Connector

Table 16 − SGI 8−Pin MiniDIN Signals

Pin Description Pin Description
1 DTR − Data Terminal Ready5 RXD − Received Data
2 CTS − Clear To Send 6 RTS − Request To Send
3 TXD − Transmitted Data 7 DCD − Data Carrier Detect
4 GND − Logic Ground 8 GND − Logic Ground

Serial Programming Guide for POSIX Operating Systems

34 SGI Pinouts

Appendix B, ASCII Control Codes

This chapter lists the ASCII control codes and their names.

Control Codes

The following ASCII characters are used for control purposes:

Table 17 − ASCII Control Codes

Name Binary Octal Decimal Hexadecimal
NUL 00000000000 0 00
SOH 00000001001 1 01
STX 00000010002 2 02
ETX 00000011003 3 03
EOT 00000100004 4 04
ENQ 00000101005 5 05
ACK 00000110006 6 06
BEL 00000111007 7 07
BS 00001000010 8 08
HT 00001001011 9 09
NL 00001010012 10 0A
VT 00001011013 11 0B
NP, FF 00001100014 12 0C

Appendix B, ASCII Control Codes 35

Name Binary Octal Decimal Hexadecimal
CR 00001101015 13 0D
SO 00001110016 14 0E
SI 00001111017 15 0F
DLE 00010000020 16 10
XON, DC1 00010001021 17 11
DC2 00010010022 18 12
XOFF, DC3 00010011023 19 13
DC4 00010100024 20 14
NAK 00010101025 21 15
SYN 00010110026 22 16
ETB 00010111027 23 17
CAN 00011000030 24 18
EM 00011001031 25 19
SUB 00011010032 26 1A
ESC 00011011033 27 1B
FS 00011100034 28 1C
GS 00011101035 29 1D
RS 00011110036 30 1E
US 00011111037 31 1F

Serial Programming Guide for POSIX Operating Systems

36 Control Codes

Appendix C, GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

Appendix C, GNU Free Documentation License 37

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world−wide, royalty−free license, unlimited in duration, to use that work under the conditions stated herein.
The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License. A Front−Cover Text may be at
most 5 words, and a Back−Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine−generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or
"History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

Serial Programming Guide for POSIX Operating Systems

38 Appendix C, GNU Free Documentation License

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front−Cover Texts on the front cover,
and Back−Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer−network location from which the general network−using public has access to download
using public−standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

•

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the

•

Serial Programming Guide for POSIX Operating Systems

Appendix C, GNU Free Documentation License 39

Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.•
D. Preserve all the copyright notices of the Document.•
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.•
F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

•

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

•

H. Include an unaltered copy of this License.•
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

•

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

•

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

•

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

•

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

•

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

•

O. Preserve any Warranty Disclaimers.•

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined

Serial Programming Guide for POSIX Operating Systems

40 Appendix C, GNU Free Documentation License

work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any
sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,

Serial Programming Guide for POSIX Operating Systems

Appendix C, GNU Free Documentation License 41

from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Serial Programming Guide for POSIX Operating Systems

42 Appendix C, GNU Free Documentation License

Appendix D, Change History

This appendix lists the changes made to the document with each revision.

Edition 5, Revision 3

The following changes were made for the 3rd revision:

Now use the GNU Free Documentation License for the guide.•
Changed the examples to use the Linux serial port filenames.•
Put the infrastructure in place to allow for easier translations of the guide.•
The guide text is now fully justified.•

Appendix D, Change History 43

Serial Programming Guide for POSIX Operating Systems

44 Edition 5, Revision 3

	Table of Contents
	IntroductionLicenseOrganization
	Chapter 1, Basics of Serial CommunicationsWhat Are Serial Communications?What Is RS-232?Signal DefinitionsAsynchronous CommunicationsWhat Are Full Duplex and Half Duplex?Flow ControlWhat Is a Break?Synchronous CommunicationsAccessing Serial PortsSerial Port FilesOpening a Serial PortWriting Data to the PortReading Data from the PortClosing a Serial Port
	Chapter 2, Configuring the Serial PortThe POSIX Terminal InterfaceControl OptionsLocal OptionsInput OptionsOutput OptionsControl Characters
	Chapter 3, MODEM CommunicationsWhat Is a MODEM?Communicating With a MODEMStandard MODEM CommandsCommon MODEM Communication Problems
	Chapter 4, Advanced Serial ProgrammingSerial Port IOCTLsGetting the Control SignalsSetting the Control SignalsGetting the Number of Bytes AvailableSelecting Input from a Serial PortThe SELECT System CallUsing the SELECT System CallUsing SELECT with the X Intrinsics Library
	Appendix A, PinoutsRS-232 PinoutsRS-422 PinoutsRS-574 (IBM PC/AT) PinoutsSGI Pinouts
	Appendix B, ASCII Control CodesControl Codes
	Appendix C, GNU Free Documentation License
	Appendix D, Change HistoryEdition 5, Revision 3

