
 1 of 31 REV: 022404

INTRODUCTION
Dallas Semiconductor 1-Wire® devices are used in remote places where the distance between the device and the
Host may exceed the 1-Wire specifications.

In such cases it is useful to be able to have some kind of communication equipment in between the sensor and the
data processing computer which allow data from 1-Wire devices to be efficiently and transparently transferred, for
instance over LAN or WAN networks, in a uniform and consistent way.

The goal with this document is to suggest how this problem can be easily solved in a relative simplified manner by
inserting a transport layer in the driver software, which operates with a uniform frame buffer format. This extra layer
allows different parts of the 1-Wire protocol software to be placed at different physical locations and in this way
extend the versatility of the 1-Wire concept. (Special terms, commands, or codes are shown in italics for clarity.)
This document was originally created to support the IEEE 1451.4 A Smart Transducer Interface for Sensors and
Actuators—Mixed-Mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats
standards committee.

SCENARIO
Dallas Semiconductor devices built into remote sensors are, via a 1-Wire bus and a number of individual
instruments, connected to a host application. The instruments are connected together via different communication
lines and are using different communication protocols. The instruments will in this respect act as communication
repeaters, which transfer data transparently between the Host application and devices on the 1-Wire bus.

Figure 1. Repeater in a Multiple-Protocol Scenario

Protocol
1

Application
(Knowledge about
how data is used)

Presentation
(Knowledge about

data formats)

Transport
(Knowledge about
how to locate 1-

Wire's and 1-Wire
devices)

Protocol
1

Protocol
2

Protocol
2

1-Wire
protocol
(lower
layers)

REPEATER 1 REPEATER 2

Communication bus 1 Communication bus 2 1-Wire

Application Note 2966
Minimal Remote 1-Wire Master

Protocol
www.maxim-ic.com

1-Wire is a registered trademark of Dallas Semiconductor.

AN2966: Minimal Remote 1-Wire Master Protocol

2 of 31

PRIMARY GOALS
The software in the instruments (the repeaters) should be stable for the lifetime of the instruments (> 10 years)
even if new (and yet unknown) Dallas Semiconductor devices are connected the 1-Wire bus.

The communication speed should be optimized. This implies that the number of communication transactions on the
other communication buses (bus 1 and bus 2 in the example) should be minimized, as these buses may have a
much lower bandwidth than the 1-Wire bus itself, and/or may also be used for other communication tasks not
related to the 1-Wire communication.

DERIVED GOALS
All knowledge about specific 1-Wire device types should be isolated to the Host program. The repeaters should not
contain any device specific knowledge.

Communication sessions should be based on whole buffers (instead of individual bytes and bits) in order to
minimize the communication overhead on the intervening buses (bus 1 and 2 in the example).

A few basic and device transparent 1-Wire transactions for the repeaters should be defined, together with the
corresponding buffer formats. These few device transparent transactions should be sufficient for communication
with all types of 1-Wire devices.

The minimum buffer size, which a repeater shall be able to handle, shall be well defined. (It is assumed that the
repeaters may have a very limited buffering capability).

If communication with a Dallas Semiconductor device requires a larger buffer it should be possible to split a 1-Wire
transaction over several intervening buffers transferred between the Host and the repeater which have the 1-Wire
connection.The intervening communication protocols will typically pack the 1-Wire buffer frame in “envelopes”
using their own format (for instance add some header and tail bytes). This is transparent to the 1-Wire
communication and is not a part of this specification.

ACCEPTED LIMITATIONS
It is not required that the 1-Wire interface in the repeater handle EPROM programming voltages, higher speed
'overdrive' communication, or strong pull-up power delivery but its use is to be defined by this specification.

It is assumed that all communication initiatives through the repeaters are initiated from the host application.

TRANSPARENT 1-WIRE BUFFER TRANSACTIONS
The transparent buffer transaction on the 1-Wire bus takes advantage of the fact that transmit and receive can be
done at the same time on a bit to bit basis. (A one (1) shall be transmitted by the repeater when receiving bit
frames from a 1-Wire device).

After a transaction the buffer in the repeater will contain any information read from the 1-Wire (device). The buffer
in the repeater with the resulting 1-Wire transaction can then be transmitted back to the host, if needed. All buffer
communication initiatives is taken by the host.

TRANSPARENT 1-WIRE BUFFER PROTOCOL SPECIFICATION
Buffer Formats
The transparent buffer transaction protocol has two communication buffers defined in the repeater.
One inbound buffer that receives a frame from the host computer and one outbound buffer where the return frame
is constructed.

AN2966: Minimal Remote 1-Wire Master Protocol

3 of 31

General Inbound Format

Length byte Array of Single and Multiple byte Commands

General Outbound Format

Length byte Array of Single and Multiple byte Command results

The first byte in both the inbound and outbound frames is a length byte representing the number of bytes in the
frame not including the length byte.

The inbound frame may contain a series of 1-Wire commands. The commands in inbound buffer are parsed. If the
parsing produces an result, the command and result are put in the outbound buffer.

If the length is 0 in an inbound buffer the buffer is ignored and no processing takes place.

The minimum size of the inbound and outbound buffers a repeater shall be able to handle is 49 bytes including the
Length byte.

General Command Formats
There are two types of 1-Wire commands. Single byte 1-Wire commands and multibyte 1-Wire commands. The
MSB bit of the first byte in the header identifies if it is a single byte or a multibyte command. If it is a multibyte
command the header consist of two bytes, the command byte and a byte defining the length of the attached block
of data bytes.

Inbound Command Format Outbound Response Format

Single byte command response (all commands)

Command
code, 1 byte
(1xxx xxxx)

return_code
1 byte

Command
code, 1 byte
(1xxx xxxx)

Single byte command

Command
code, 1 byte
(0xxx xxxx)

Multiple byte command response (specified commands)

data_length
1 byte

data_bytes

Multiple byte command

Command
code, 1 byte
(0xxx xxxx)

data_length
1 byte

data_bytes

A command is always a single byte value. The command is always copied from the inbound buffer to the outbound
buffer if the 1-Wire operation produces a result.

data_length used with multibyte commands is always a single byte with the value as the number of bytes following
the data_length byte in the buffer. With DATA_xxx commands the data_length value is also used to differentiate
between read and write operations on the internal protocol registers. For a register write, data_length is different
from zero. Data is copied from the inbound buffer to the data register identified by the command. No command or
data is copied to the outbound buffer. For a register read, data_length is equal to zero. The command is copied to
the outbound buffer. The data_length for the register identified by the command is copied to the outbound followed
by the data from the register.

return_code is always a single byte value following a single byte command in the outbound buffer.

AN2966: Minimal Remote 1-Wire Master Protocol

4 of 31

Command Overview

Table 1a. Single Byte Commands
COMMAND NAME DESCRIPTION CODE

CMD_ML_RESET Reset all devices on 1-Wire and report if any devices are responding 80 (hex)

CMD_ML_SEARCH Perform 1-Wire search using the current search state as specified in the
DATA_ID and DATA_SEARCH_STATE registers.

81

CMD_ML_ACCESS Select the current device as specified in the DATA_ID register using the 1-Wire
MATCH_ROM command 55 hex.

82

CMD_ML_OVER-
DRIVE_ACCESS

Select the current device as specified in the DATA_ID register using the 1-Wire
MATCH_ROM command 69 hex which at the same time sets the device in
overdrive mode. If overdrive mode is not supported by the repeater end this
command will return RET_CMD_UNKNOWN

83

CMD_RESET Reset repeater end to default state. Previous processed data in the outbound
buffer remains unchanged.

84

CMD_GETBUF Return the outbound buffer as it is.
If this command can be processed normally then the command byte is not
copied to the outbound buffer and the length of the outbound buffer remains
unchanged.
If this command can not be processed the CMD_GETBUF command is
returned immediately, typically with the RET_BUSY return code. This is the
only command which causes the outbound buffer to be returned.
When the CMD_GETBUF command is present in an inbound buffer it shall
always be the last command in the inbound buffer.
When a command (in the next inbound buffer) following CMD_GETBUF is not a
CMD_GETBUF then the outbound buffer is cleared before this command is
processed. This allow the host to request retransmission of the outbound buffer
multiple times.

85

CMD_ERROR Error command. Is only used in the outbound buffer of the repeater end to
signal errors to the host. It can typically be errors resulting from processing of
multibyte commands or any internal errors in the repeater end. If it occurs in an
inbound buffer the return status should be RET_CMD_UNKNOWN.

86

(Reserved) Single byte commands reserved for further extension of this protocol. Should
return with the return code RET_CMD_UNKNOWN

87-CF

(Vendor specific) Single byte commands reserved to be defined by the repeater vendor. If not
used, these commands should return with the return code
RET_CMD_UNKNOWN

D0-FF

AN2966: Minimal Remote 1-Wire Master Protocol

5 of 31

Table 1b. Multibyte Commands, with Required Repeater Data Registers
COMMAND NAME DESCRIPTION COM-

MAND
REGISTER

SIZE
DATA_ID Write or read the 64 bit 1-Wire ID number register.

If the data length of a write command is less than 8 and more
than 0 then the remaining register bytes are cleared.

00
(hex)

8 (bytes)

DATA_SEARCH_STATE Write or read the 2 byte 1-Wire search state register. During
register write the internal search algorithm state is cleared.
Write to the first register presets LastDiscrepancy, (the
DATA_ID bit index for search start). The second register,
LastFamilyDiscrepancy is always cleared by write.

01 2

DATA_SEARCH_CMD Write or read 1-Wire search command register. This is the 1-
Wire command used during the CMD_ML_SEARCH command.

02 1

DATA_MODE Write or read register which define the options, speed and level
of the 1-Wire bus

03 1

DATA_CAPABILITY Read 1-Wire capabilities of repeater
(Operation assumes an inbound data_length value of 0)

04 (1)
Constant
value

DATA_OUTBOUND_MAX Read max length of outbound buffer in bytes. (Operation
assumes an inboumd data_length value of 0)

05 (1)
Constant
value

DATA_INBOUND_MAX Read max length of inbound buffer in bytes. (Operation
assumes an inbound data_length value of 0)

06 (1)
Constant
value

DATA_PROTOCOL Read protocol version identification as a NUL (/0) terminated C
string. The current version 1.00 protocol is “ML100”.
(Operation assumes an inbound data_length value of 0)

07 (Max 20
incl. \0)
Constant
value

DATA_VENDOR Read repeater vendor identification data as a NUL (/0)
terminated C string. (Operation assumes an inbound
data_length value of 0)

08 (Max 20
incl. \0)
Constant
value

CMD_ML_BIT Initiates write_read 1-Wire communication bit using the LS bit of
the each data byte provided.

09 (na)

CMD_ML_DATA Initiates a 1-Wire communication block. The first byte in data
defines the total number of 1-Wire data bytes processed on the
1-Wire bus called block_length. 1-Wire processing starts with
the data byte following this byte. If the number of data_bytes to
process is larger than the header block_length-1 then the
remaining bytes are processed equal to an inbound data value
of FF hex.
The result of the 1-Wire processing is placed in the outbound
register.

0A (na)

CMD_DELAY Perform a delay which length is defined by the attached data
byte.
data_length shall be 1.

0B (na)

(Reserved) Multibyte commands reserved for further extension of this
protocol specification.
If the command is unknown to the repeater end, then the
command CMD_ERROR with return code
RET_CMD_UNKNOWN is placed into the outbound buffer.

0C-4F

(Vendor specific) Multibyte commands reserved for further vendor specific
purposes.
If the command is unknown to the repeater end, then the
command CMD_ERROR with return code
RET_CMD_UNKNOWN is placed into the outbound buffer.

50-7F

Total: 12 RAM register bytes

AN2966: Minimal Remote 1-Wire Master Protocol

6 of 31

Table 2. Return Codes (Always Follow Single Byte Commands in Outbound Buffer)
RETURN CODE NAME DESCRIPTION RETURN

CODE
RET_SUCCESS Command operation successful 00 (hex)
RET_END_SEARCH End of device search, the last device in ID search was the

previous device found and the search state will now be
reset.

01

RET_BUSY Previous buffer has not been processed yet. 02
RET_ERROR Unspecified error (stops inbound buffer processing) 03
RET_NO_DEVICE No devices present on the 1-Wire (stops inbound buffer

processing)
04

RET_ML_SHORTED 1-Wire appears to be shorted (stops inbound buffer
processing)

05

RET_OUTBOUND_OVERRUN Outbound buffer overrun error (stops inbound buffer
processing)

06

RET_INBOUND_OVERRUN Inbound buffer overrun error (stops inbound buffer
processing)

07

RET_REG_OVERRUN Data register overrun error (stops inbound buffer
processing)

08

RET_END_OF_INBOUND Unexpected end of inbound buffer (stops inbound buffer
processing)

09

RET_READ_ONLY Attempt to write a read-only data register (data_length not
0, stops inbound buffer processing)

0A

RET_WRITE_ONLY Attempt to read a write-only data register (data_length is
0, stops inbound buffer processing)

0B

RET_CMD_UNKNOWN Command unknown (stops inbound buffer processing) 0C
(Reserved) Reserved for future expansion of this protocol specification 0D to 7F
(Vendor specific) Vendor specific return codes 80 to FF

Before any vendor specific commands are used by the host the DATA_VENDOR command should be used to
identify that the expected repeater type is present. This precaution will prevent command contention between
different vendors.

Command Processing Description
Command Processing Sequence
The inbound and outbound buffers may contain multiple commands in a sequence.

The inbound buffer is parsed and processes sequentially. Most of the commands being processes will append
results to the outbound buffer. The commands sequence in the outbound buffer will thus match the command
sequence order in inbound buffer. The only exception to this is when CMD_ERROR is inserted in the outbound
buffer, and when a busy state RET_BUSY is returned immediately as result of a CMD_GETBUF command.

The outbound buffer is cleared when an inbound buffer is received, except if the first command in the inbound
buffer is a CMD_GETBUF, which instead causes the outbound buffer to be (re-)transmitted.

If the reception of an inbound buffer results in inbound buffer overflow, the CMD_ERROR command is inserted in
the outbound buffer with a RET_INBOUND_OVERRUN status. The remaining contents of the inbound buffer is
ignored.

If the processing of an inbound buffer results in outbound buffer overflow, either the current command, if it is a
single byte command, or the CMD_ERROR command is inserted in the outbound buffer with the RET_
OUTBOUND_OVERRUN status. The processing of current command is stopped, and any further command
processing of the inbound buffer stops.

Inbound may also be halted due to 1-Wire conditions of no device present RET_NO_DEVICE or a shorting of the
1-Wire bus RET_ML_SHORTED. Unknown or improper commands will return codes (RET_RET_OVERRUN,
RET_END_OF_INBOUND, RET_READ_ONLY, RET_WRITE_ONLY, RET_CMD_UNKNOWN,

AN2966: Minimal Remote 1-Wire Master Protocol

7 of 31

RET_OUTBOUND_OVERRUN) and stop inbound command processing. Any error result that halts inbound
command processing will be considered the final error message.

A repeater implementation shall assure that there always is place in the outbound buffer for one final error
message (CMD_ERROR + error status). After the final error message has been put in the outbound buffer all
processing in the repeater is allowed to stop, as described above, until the outbound buffer has been transmitted or
reset.

If successive error events are detected by the repeater end, after the final error message has been placed in the
outbound buffer, then any following error events should be ignored. This state presets until the outbound buffer has
been reset after transmission or by the CMD_ML_RESET command. This assures that error information is given to
the host in the same sequence as they occur in the slave and that no previous information in the buffer is lost or
overwritten.

When processing of an inbound buffer is halted due to an error condition, the inbound buffer is scanned for a
CMD_GETBUF command. If found, the present content of outbound buffer is send back to the host. If a
CMD_GETBUF is not found, no further command processing takes place until another inbound buffer is received.

Buffer Frame Synchronization
The outbound buffer is transmitted by the repeater end when a CMD_GETBUF command is received.

The CMD_GETBUF can be looked upon as a “token”. When the repeater end is given the CMD_GETBUF “token”
from the host it is allowed to transmit the outbound buffer once. The outbound buffer shall only be transmitted once
for each CMD_GETBUF “token”, and any transmission shall not start before a CMD_GETBUF “token” is received
(and processed).

If the repeater end is busy the CMD_GETBUF “token” is returned back to the host immediately. The host end is
then allowed to try to send the token back again (single bus polling) or to give it to some other low-level 1-Wire
protocol in operation elsewhere (multibus polling).

CMD_GETBUF shall always be the last command (if not the only command) in an inbound buffer as any further
command parsing of the inbound buffer is stopped.

Command Processing Sequence
The inbound and outbound buffers may contain multiple commands in a sequence.

The inbound buffer is parsed and processes sequentially. Most of the commands being processes will append
results to the outbound buffer. The commands sequence in the outbound buffer will thus match the command
sequence order in inbound buffer. The only exception to this is when CMD_ERROR is inserted in the outbound
buffer, and when a busy state RET_BUSY is returned immediately as result of a CMD_GETBUF command.

The outbound buffer is cleared when an inbound buffer is received, except if the first command in the inbound
buffer is a CMD_GETBUF, which instead causes the outbound buffer to be (re-)transmitted.

If the reception of an inbound buffer results in inbound buffer overflow, the CMD_ERROR command is inserted in
the outbound buffer with a RET_INBOUND_OVERRUN status. The remaining contents of the inbound buffer is
ignored.

If the processing of an inbound buffer results in outbound buffer overflow, either the current command, if it is a
single byte command, or the CMD_ERROR command is inserted in the outbound buffer with the RET_
OUTBOUND_OVERRUN status. The processing of current command is stopped, and any further command
processing of the inbound buffer stops.

Inbound may also be halted due to 1-Wire conditions of no device present RET_NO_DEVICE or a shorting of the
1-Wire bus RET_ML_SHORTED. Unknown or improper commands will return codes (RET_RET_OVERRUN,
RET_END_OF_INBOUND, RET_READ_ONLY, RET_WRITE_ONLY, RET_CMD_UNKNOWN,
RET_OUTBOUND_OVERRUN) and stop inbound command processing. Any error result that halts inbound
command processing will be considered the final error message.

AN2966: Minimal Remote 1-Wire Master Protocol

8 of 31

A repeater implementation shall assure that there always is place in the outbound buffer for one final error
message (CMD_ERROR + error status). After the final error message has been put in the outbound buffer all
processing in the repeater is allowed to stop, as described above, until the outbound buffer has been transmitted or
reset.

If successive error events are detected by the repeater end, after the final error message has been placed in the
outbound buffer, then any following error events should be ignored. This state presets until the outbound buffer has
been reset after transmission or by the CMD_ML_RESET command. This assures that error information is given to
the host in the same sequence as they occur in the slave and that no previous information in the buffer is lost or
overwritten.

When processing of an inbound buffer is halted due to an error condition, the inbound buffer is scanned for a
CMD_GETBUF command. If found, the present content of outbound buffer is send back to the host. If a
CMD_GETBUF is not found, no further command processing takes place until another inbound buffer is received.

Buffer Frame Synchronization
The outbound buffer is transmitted by the repeater end when a CMD_GETBUF command is received.

The CMD_GETBUF can be looked upon as a “token”. When the repeater end is given the CMD_GETBUF “token”
from the host it is allowed to transmit the outbound buffer once. The outbound buffer shall only be transmitted once
for each CMD_GETBUF “token”, and any transmission shall not start before a CMD_GETBUF “token” is received
(and processed).

If the repeater end is busy the CMD_GETBUF “token” is returned back to the host immediately. The host end is
then allowed to try to send the token back again (single bus polling) or to give it to some other low-level 1-Wire
protocol in operation elsewhere (multibus polling).

CMD_GETBUF shall always be the last command (if not the only command) in an inbound buffer as any further
command parsing of the inbound buffer is stopped.

AN2966: Minimal Remote 1-Wire Master Protocol

9 of 31

Figure 2a. Receiving Inbound Buffer

 incoming inbound
 buffer detected

 inbound
length = 0
 ?

Yes

No inbound
 length >
 max?

No

Yes

Ignore this inbound
frame

Process the inbound
buffer (Figure 2b)

Set return value to
RET_INBOUND_
OVERFLOW

Append return
value to outbound
using cmd
CMD_ERROR

 Done

*See reference in Table 3

 CMD_
 GETBUF
 first cmd
 ?

No

Yes

Reset
outbound buffer

Send
outbound buffer

 last_cmd
 = CMD_
 GETBUF
 ?

No

Yes

 last_cmd_
 return=�Halt
 condition
 ?

No

Yes

�Note: All return codes are 'Halt'
conditions except RET_SUCCESS
and RET_END_SEARCH.

AN2966: Minimal Remote 1-Wire Master Protocol

10 of 31

Figure 2b. Inbound Command Processing

 End of
 inbound
 buffer?

No

Yes

Retrieve next byte from
inbound buffer (cmd)

Is it a
mult-byte
command

?

No

Yes Retrieve next byte from
inbound buffer
(data_length)

Set a pointer to the next
byte in the inbound buffer
(data_bytes) and adjust
command parsing past
data bytes

Are
there (data_

length)
bytes?

Yes

No

Process the command
using (cmd, data_length,
data_bytes)
(see Figures 3a to 3j)

Set return value to
RET_END_OF_
INBOUND

Was
return a�Halt

condition
?

No

Yes CMD_
GETBUF in

inbound
?

Yes

No

Send
outbound buffer

Done

Append cmd
CMD_ERROR and
return value to
outbound.

�Note: All return codes are 'Halt'
conditions except RET_SUCCESS
and RET_END_SEARCH.

*inbound buffer to
process

outbound
buffer + 2
<= max?

Yes

No
Append CMD_ERROR
and return
RET_OUTBOUND
_OVERRUN to
outbound.

 Done

*See reference in Table 3

Set last_cmd = cmd
last_cmd_return = return

AN2966: Minimal Remote 1-Wire Master Protocol

11 of 31

Table 3. Flow-Chart Variable Descriptions
FLOW VARIABLE DESCRIPTION
cmd The current command code being processed
data_length Number of data bytes if current command is a mult-byte command
data_bytes Pointer to the start of the data bytes in a mult-byte command
return Current result byte of the command being processed
inbound Buffer containing the incoming list of commands from host
outbound Buffer containing the outgoing response back to the host resulting from

commands in inbound
max The maximum size of the inbound buffer, same as DATA_INBOUND_MAX
last_cmd Last command that was evaluated
last_cmd_return Result of last command that was evaluated

Figure 2c. Outbound Space Verification

Room for
num+2 bytes

outbound
?

Yes

No

Receive number of
bytes to check *num

Append the command
CMD_ERROR and a
response byte of
RET_OUTBOUND_
OVERRUN to the
outbound buffer, update
outbound length

Done, return
TRUE

Done, return
FALSE

Reference
num - the number of bytes needed in

outbound buffer
*See reference in Table 3

AN2966: Minimal Remote 1-Wire Master Protocol

12 of 31

Detailed Command Description
CMD_ML_RESET
The CMD_ML_RESET command resets all 1-Wire devices and detects whether at least one device is present. If a
device is not present then the return code RET_NO_DEVICE is placed in the outbound buffer and inbound buffer
processing stops. This command uses the DATA_MODE data register for the communication speed at which the
reset signal is sent to the 1-Wire.

Example: reset devices on 1-Wire

inbound CMD_ML_RESET

outbound CMD_ML_RESET <return byte>

Figure 3a. Processing Command CMD_ML_RESET

Receive *cmd
(CMD_ML_RESET)

Reset the 1-Wire
devices

Presence
of devices
detected

?
Yes

No
Set the return value to
RET_NO_DEVICE

Append cmd and
return value to
outbound

Done, return
the (return) value

*See reference in Table 3

Set the return value to
RET_SUCCESS

AN2966: Minimal Remote 1-Wire Master Protocol

13 of 31

CMD_ ML_SEARCH
The CMD_ML_SEARCH command performs a search using the current search state in the repeater to find the
'next' device on the 1-Wire. The command does NOT do a 1-Wire reset before the search. A CMD_ML_RESET
command shall be used before CMD_ML_SEARCH in most cases. This command uses the search state
information in the repeater data register DATA_SEARCH_STATE and DATA_ID. To reset the search to find the
'first' device on the 1-Wire, set the two bytes in the DATA_SEARCH_STATE data register to 0. See the
DATA_SEARCH_STATE command description for more details on its use. This command uses the DATA_MODE
data register for the communication speed at which the search is performed on the 1-Wire. See Appendix for a
detailed description of the 1-Wire search algorithm.

Example: search for the first device on the 1-Wire. Reset the search state and then do a search. Read
the ID of the discovered device.

 inbound DATA_SEARCH_STATE <2><0,0>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

Example: search for the next two devices on the 1-Wire and return the ID's of these devices.

 inbound CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>
CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

AN2966: Minimal Remote 1-Wire Master Protocol

14 of 31

Figure 3b. Processing Command CMD_ML_SEARCH

Receive *cmd
(CMD_ML_SEARCH)

Based on contents of
DATA_ID and
DATA_SEARCH_STATE
search the MicroLAN®
(see AN187)

From the contents of
DATA_SEARCH_STATE
look if the previous 1-Wire
search was the last device
in the search sequence

Previous
last device

?

Yes

No

Set the return value to
RET_END_SEARCH

Set the return
value to
RET_SUCCESS

Append cmd and return
value to outbound

 Done, return
 the (return) value

Reset the search state
DATA_SEARCH_STATE

Was a
device found

in search
?

No

Yes

*See reference in Table 3

AN2966: Minimal Remote 1-Wire Master Protocol

15 of 31

CMD_ ML_ACCESS
The CMD_ML_ACCESS command selects the device whose ID number is in the data register DATA_ID. The 1-
Wire device is selected by using the 'Match ROM' command. This command is used by first resetting the line with
the CMD_ML_RESET command, sending the 'Match ROM' command of 55 hex and then sending the 8 byte ID
from DATA_ID.

At this point the 1-Wire device will be 'accessed'. It is then ready for device specific commands. This command
returns the return code RET_NO_DEVICE if CMD_ML_RESET fails and RET_ML_SHORTED if any other problem
is detected. On success the return code is RET_SUCCESS.

This command uses Speed bit in the DATA_MODE data register to select the communication speed at which the
access is performed on the 1-Wire.

Example: set the current device ID and then select that device.

inbound DATA_ID <8><8 bytes of ID>
CMD_ML_ACCESS

outbound CMD_ML_ACCESS <return byte>

AN2966: Minimal Remote 1-Wire Master Protocol

16 of 31

Figure 3c. Processing Command CMD_ML_ACCESS

 Receive *cmd
(CMD_ML_ACCESS)

Perform the command
CMD_ML_RESET

*See reference in Table 3

Is result
success

?

Yes

No Set the return value to
RET_NO_DEVICE

Send the MATCH_ROM
command to the 1-Wire and
verify echo

Send the 8 bytes of the
DATA_ID to the 1-Wire and
verify each echo

Echo of
data correct

?

Yes

No Set the return value to
RET_ML_SHORTED

Set the return value to
RET_SUCCESS

 Done, return
 the (return) value

Append cmd and return
value to outbound

AN2966: Minimal Remote 1-Wire Master Protocol

17 of 31

CMD_ ML_OVERDRIVE_ACCESS
The CMD_ML_OVERDRIVE_ACCESS command selects the device whose ID number is in the data register
DATA_ID and at the same time places the device and repeater into Overdrive communication speed. This is done
by first forcing the repeater into normal speed by clearing the Speed bit in the DATA_MODE register. The 1-Wire is
then reset at normal speed with the CMD_ML_RESET command.

If CMD_ML_RESET detects a device presence then the 'Overdrive Match ROM' command (69 hex) is sent also at
normal speed. At this point the Speed bit in the DATA_MODE register is set forcing the repeater into Overdrive
communication speed. The 8 byte ID in DATA_ID is then transmitted at Overdrive speed. The Speed bit remains
set in Overdrive after this command is completed. This command returns the return code RET_NO_DEVICE if
CMD_ML_RESET fails and RET_ML_SHORTED if any other problem is detected. On success the return code is
RET_SUCCESS.

Note that for this command to operate the repeater shall be capable of Overdrive speed (see DATA_CAPABILITY
command) and the current device whose ID is in DATA_ID shall be an Overdrive capable device. If overdrive mode
is not supported by the repeater then use of this command will result in RET_CMD_UNKNOWN.

Example: set the current device ID and then select that device and place it and the repeater into
Overdrive..

inbound DATA_ID <8><8 bytes of ID>
CMD_ML_OVERDRIVE_ACCESS
DATA_MODE <00>

outbound CMD_ML_OVERDRIVE_ACCESS <return byte>
DATA_MODE <01><01 (Overdrive)>

AN2966: Minimal Remote 1-Wire Master Protocol

18 of 31

Figure 3d. Processing Command CMD_ML_OVERDRIVE_ACCESS

Receive *cmd
(CMD_ML_OVER-

DRIVE_ACCESS)

Perform the command
CMD_ML_RESET

*See reference in Table 3

Is result
success

?

Yes

No Set the return value to
RET_NO_DEVICE

Send the OVERDRIVE_-
MATCH_ROM command to
the 1-Wire and verify echo

Send the 8 bytes of the
DATA_ID to the 1-Wire and
verify each echo

Echo of
data correct

?

Yes

No Set the return value to
RET_ML_SHORTED

Set the return value to
RET_SUCCESS

Append cmd and return
value to outbound

Clear Speed bit in
DATA_MODE forcing into
normal speed

Set Speed bit in
DATA_MODE forcing into
overdrive speed

Done, return
 the (return) value

DATA_
CAPABILITIY

have OD
?

Yes

No Set the return value to
RET_CMD_UNKNOWN

AN2966: Minimal Remote 1-Wire Master Protocol

19 of 31

CMD_RESET
Repeater Reset resets the repeater and brings it up in the default state. Any data content in the outbound buffer not
already read by the host will be lost after CMD_RESET. See Table 4 for the default values that are set by
CMD_RESET.

Example: reset the state of the repeater to its default
inbound CMD_RESET
outbound CMD_RESET <return byte>

Table 4. Default Values
REPEATER STATE DEFAULT VALUE
DATA_ID 0,0,0,0,0,0,0,0
DATA_SEARCH_STATE 0,0
DATA_SEARCH_CMD F0 hex
DATA_MODE 0 (Normal speed)
DATA_CAPABILITY repeater specific
DATA_OUTBOUND_MAX repeater specific, 49 bytes minimum
DATA_INBOUND_MAX repeater specific, 49 bytes minimum
DATA_PROTOCOL "ML100" for this specification
DATA_VENDOR repeater specific
outbound length 0
last_cmd CMD_ML_RESET (80 hex)
last_cmd_return RET_SUCCESS (00 hex)
LastDeviceFlag 0

Figure 3e. Processing Command CMD_RESET

Receive cmd
(CMD_RESET)

Reset the state of the
repeater to it's default

Done, return
 the (return) value

Append cmd and return
value to outbound

Set the return value to
RET_SUCCESS

*See reference in Table 3

AN2966: Minimal Remote 1-Wire Master Protocol

20 of 31

CMD_GETBUF
The CMD_GETBUF command sends the current contents of the outbound buffer back to the host. Any further
commands in the inbound buffer is ignored. The CMD_GETBUF command should therefore always be the last
command in the inbound buffer.

The outbound buffer remain unchanged after processing of CMD_GETBUF. The host can therefore always request
retransmission of the outbound buffer by sending a new CMD_GETBUF command (should something have gone
wrong during the previous transmission).

A command in the inbound buffer following processing of a CMD_GETBUF command will reset the outbound buffer
before the new command is processed. See the Command Processing Description for details on CMD_GETBUF.

Figure 3f. Processing Command CMD_GETBUF

Receive *cmd
(CMD_GETBUF)

Send the outbound buffer
to the host.

*See reference in Table 3

Set the return value to a
Halt condition

Done, return
 the (return) value

CMD_ERROR
The error command is only used in the outbound buffer as a way to convey errors back to the host. It can typically
be errors resulting from processing of multibyte commands. If this command occurs in the inbound buffer it is
copied to the outbound buffer with the return status RET_CMD_UNKNOWN.

DATA_ ID
The DATA_ID command allows reading and writing of the 8 byte device ID register in the repeater. This register
contains the ID of the last device found on the 1-Wire. This register is both used in the current search to find the
'next' device on the 1-Wire and is also the location for the result of that search. The length is 8 bytes with a default
value of all 0's.

The Figure 3g flow diagram displays the general flow for commands that read or write repeater registers. Note that
some repeater registers can only be read (read-only, length byte zero) and some can only be written (write-only,
length byte non-zero).

AN2966: Minimal Remote 1-Wire Master Protocol

21 of 31

Figure 3g. Processing Data Register Commands

Receive *cmd,
data_length, and

 data_bytes

Is
data_length

= 0?

Yes (read)

No (write)

Is this
register

write-only
?

No

Yes Set the return value to
RET_WRITE_ONLY

Check for room in
outbound for 2 +
length of register (num)
bytes (see Figure 2d)

Was
there room

in outbound
?

Yes

No Set return value to
RET_OUTBOUND_
OVERRUN

Copy the command
cmd and the length of
the register into
outbound

Copy the data register
contents into the
outbound buffer

Set return value to
RET_SUCCESS

Is data_
length >

reg
size?

Yes

No

Set the return value to
RET_REG_OVERRUN

Copy data_length
number of bytes
starting at data_bytes
into the repeater's
register

Set return value to
RET_SUCCESS

Done, return
 the (return) value

Is this
register

read-only
?

Yes

No

Set the return value to
RET_READ_ONLY

*See reference in Table 3

Set remainder of
repeater's register to
zeros

AN2966: Minimal Remote 1-Wire Master Protocol

22 of 31

DATA_SEARCH_STATE
The DATA_SEARCH_STATE command enables reading and writing to the two byte register that keeps that count
of the last search and is used to find the 'next' device in the current search. These two bytes can be set in
combination with DATA_ID to achieve targeted searches of a particular family code. The default value is all 0's.
The first byte in this search state is the LastDiscrepancy number. This indicates the search path that was taken on
the last search. This number is needed to continue a search where the previous search left off. The second byte is
the LastFamilyDiscrepancy which in indicates that last search direction that was taken within the key family code
byte of the DATA_ID. A third byte in the search state is a flag LastDeviceFlag that indicates the last search was the
final device on this search of the 1-Wire. The LastDeviceFlag is internal to the repeater and is automatically cleared
when writing to DATA_SEARCH_STATE. The Figure 3g flow diagram displays the general flow for commands that
read or write repeater registers. See Appendix for a detailed description of the 1-Wire search algorithm.

Table 5. 1-Wire Search State Description
BYTE VARIABLE NAME DESCRIPTION BYTE NUMBER

LastDiscrepancy Bit index to the DATA_ID register. Identifies from
which bit the (next) search discrepancy check
should start.
For example will a value of 9 cause the next search
discrepancy to start from the 9th bit in the DATA_ID
register. The search is therefore limited to devices
identified by the first 8 bits in DATA_ID (the device
family code).
The default value is 0 (search for all devices).

0

LastFamilyDiscrepancy Bit index to the DATA_ID register. It is updated
during search to identify the first bit in DATA_ID
where a selection between two 1-Wire devices was
made. It is only updated within the first 8 bits of
DATA_ID (the device family bits).
If the next search starts from this bit index the
search will be for devices in the next device family.
See Appendix for a description of how this value is
updated by the search algorithm.

1

There are five types of operations that can be performed by using the CMD_ML_SEARCH command and
manipulating the DATA_SEARCH_STATE and DATA_ID register values. These operations concern discovery and
verification of the ID's of 1-Wire devices. For an explaination of the 1-Wire Search Algorigthm see Application Note
187. http://www.maxim-ic.com/appnotes.cfm/appnote_number/950/ln/en

FIRST
The 'FIRST' operation is to search on the 1-Wire for the first device. This is performed by setting all three bytes of
DATA_SEARCH_STATE to zero and calling CMD_ML_SEARCH. The resulting ID number can then be read from
the DATA_ID register. If no devices are present on the 1-Wire the CMD_ML_RESET will return RET_NO_DEVICE.
If an error occurred during the search itself then CMD_ML_SEARCH will return RET_END_SEARCH.

Example: Find the first device on the 1-Wire and read the ID.

inbound DATA_SEARCH_STATE <2><0,0>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ID>

http://www.maxim-ic.com/appnotes.cfm/appnote_number/950/ln/en

AN2966: Minimal Remote 1-Wire Master Protocol

23 of 31

NEXT
The 'NEXT' operation is to search on the 1-Wire for the next device. This search is usually performed after a
'FIRST' operation or another 'NEXT' operation. This is performed by leaving the two bytes of
DATA_SEARCH_STATE unchanged from the previous search and calling CMD_ML_SEARCH. The resulting ID
number can then be read from the DATA_ID register. If the last search was the last device on the 1-Wire or an
error occurred during the search itself then CMD_ML_SEARCH command will return RET_END_SEARCH.

Example: Find the next device on the 1-Wire and read the ID.

inbound CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

TARGET
The 'TARGET' operation is a way to pre-set the search state to first find a particular family type. Each 1-Wire
device has a one byte 'family code' embedded within the ID number. This 'family code' allows the 1-Wire master to
know what operations this device is capable of. If there are multiple devices on the 1-Wire it is common practice to
target a search to only the family of devices that are of interest. To target a family set the DATA_SEARCH_STATE
to 09, 00 (hex). This sets the LastDiscrepancy to beyond the family code. Then set the desired family code byte
into the first byte of the DATA_ID register.
Now call the CMD_ML_SEARCH function and then read the resulting ID in the DATA_ID register. Note
that if no device of the desired family are currently on the 1-Wire another type will be found so the family code in
the DATA_ID shall be checked.

Example: Target a family type and find the first device of that type on the 1-Wire and read it's ID.

inbound DATA_SEARCH_STATE <2><09,00>
DATA_ID <1><family code>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>
DATA_SEARCH_STATE <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>
DATA_SEARCH_STATE <2><2 bytes of search state>

SKIP
The 'SKIP' operation is to skip all of the devices that have the family type that were found in the previous search on
the 1-Wire. This operation can only be performed after a search. It is accomplished by copying the
LastFamilyDiscrepancy (byte 1) into the LastDiscrepancy (byte 0) of the DATA_SEARCH_STATE and then
performing another search with CMD_ML_SEARCH. The following example assumes that we have already
performed a search and know the contents of DATA_SEARCH_STATE.

AN2966: Minimal Remote 1-Wire Master Protocol

24 of 31

Example: Skip all 1-Wire devices with the family type found on last search and find the next device of a
different type and read it's ID.

inbound DATA_ SEARCH_STATE <2><LastFamilyDescrepancy,
 00>

CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

VERIFY
The 'VERIFY' operation verifies if a device with a know ID is currently connected to the 1-Wire. It is accomplished
by supplying the ID and doing a targeted search on that ID to verify it is present. First, set the DATA_ID register to
the known ID. Then set the LastDiscrepancy (byte 0) in the DATA_SEARCH_STATE to 64 (40 hex). Perform the
search operation with CMD_ML_SEARCH and then read the DATA_ID result. If the search was successful and the
DATA_ID remains the ID that was being searched for then the device is currently on the 1-Wire.

Example: Set the ID and verify that this 1-Wire device is currently connected.

inbound DATA_ SEARCH_STATE <2><40, 00>
DATA_ID <8><ID of device to verify>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

DATA_ SEARCH_CMD
The DATA_SEARCH_CMD command enables reading and writing to the one byte register that contains the
command used during a search operation. Currently the two valid commands are F0 (hex) for a normal search and
EC (hex) to find only alarming devices. The length is 1 byte with a default value of F0 (hex). The Figure 3g flow
diagram displays the general flow for commands that read or write repeater registers.

AN2966: Minimal Remote 1-Wire Master Protocol

25 of 31

DATA_MODE
The DATA_MODE command enables reading and writing to the one byte register that contains the current speed
and level modes of the 1-Wire on the repeater. Table 6 describes the predefined mode bit flags. Writing to this
register will result in an immediate change in the state of 1-Wire so that the mode can be manipulated in the middle
of a command block. If the repeater does not have the capability to do the operation specified in the bit flags then
there will be no effect. Consult the DATA_CAPABILIY data register. The Figure 3g flow diagram displays the
general flow for commands that read or write repeater registers.

Table 6. Bit Description of 1-Wire Mode Flags in the DATA_MODE Register
MODE BIT NAME DESCRIPTION BIT NUMBER
Speed Normal speed if 0 and overdrive if 1 0
PowerDelivery Normal 5 volt pull-up if 0 and strong pull-up if 1 1
ProgramVoltage 12 volt programming voltage disabled if 0 and enabled if 1

(PowerDelivery and PowerDown shall be disabled)
2

PowerDown low impedance zero voltage used to power down the 1-Wire
bus (PowerDelivery and ProgramVoltage shall be disabled)

3

(Reserved) Reserved for future expansion of this protocol specification. Use
0,0 as default.

4,5

(Vendor specific) Vendor specific mode flags. Before setting any of these bits the
host should use the DATA_VENDOR command to identify that
the expected repeater type is present. This precaution will
prevent functionality contention between different repeater
vendors. Use 0,0 as default.

6,7

DATA_CAPABILITY
The DATA_CAPABILITY command enables reading the one byte register that contains the capabilities of repeater
for 1-Wire communication power delivery and speed. Table 7 describes the predefined feature bit flags. The
Figure 3g flow diagram displays the general flow for commands that read or write repeater registers. Note that the
DATA_CAPABILITY register is read-only.

Table 7. Bit Description of 1-Wire Capability Flags in the DATA_CAPABILITY Register
CAPABILITY BIT NAME DESCRIPTION BIT NUMBER
Overdrive_C Overdrive speeds available if 1, only normal speed is

available if 0
0

PowerDelivery_C Strong 5-volt pull-up power delivery available if 1, only
normal communication pull-up available if 0

1

ProgramVoltage_C 12 volt programming voltage available if 1, not available if 0 2
PowerDown_C low impedance zero voltage available if 1, not available if 0 3
(Reserved) Reserved for future expansion of this protocol specification 4,5
(Vendor specific) Vendor specific mode flags 6,7

DATA_OUTBOUND_MAX
The DATA_OUTBOUND_MAX command enables reading the one byte register that contains the predefined
maximum data length in bytes of the outbound buffer. The minimum size of the outbound buffer is 48 bytes not
including the length byte. The Figure 3g flow diagram displays the general flow for commands that read or write
repeater registers. Note that the DATA_OUTBOUND_MAX register is read-only.
Note that because there should always be room for a final error message (two bytes) in the outbound buffer, the
effective size which can be depended on during 1-Wire communication is two bytes less than
DATA_OUTBOUND_MAX.

DATA_INBOUND_MAX
The DATA_INBOUND_MAX command enables reading the one byte register that contains the predefined
maximum data length in bytes of the inbound buffer. The minimum size of the inbound buffer is 48 bytes not
including the length byte. The Figure 3g flow diagram displays the general flow for commands that read or write
repeater registers. Note that the DATA_INBOUND_MAX register is read-only.

AN2966: Minimal Remote 1-Wire Master Protocol

26 of 31

DATA_PROTOCOL
The DATA_PROTOCOL command enables reading the zero terminated string that represents the protocol name
and version. This specification describes version 1.00, represented by the DATA_PROTOCOL string "ML100". The
Figure 3g flow diagram displays the general flow for commands that read or write repeater registers. Note that the
DATA_PROTOCOL register is read-only. The maximum length of this C-string is 20 bytes including the 0
termination.

DATA_VENDOR
The DATA_VENDOR command enables reading the zero terminated string that represents the vendor name. This
is used to identify vendor-specific commands and modes. The Figure 3g flow diagram displays the general flow for
commands that read or write repeater registers. Note that the DATA_VENDOR register is read-only. The maximum
length of this C-string is 20 bytes including the 0 termination.

CMD_ ML_BIT
The CMD_ML_BIT gives bit level communication with the 1-Wire. The CMD_ML_BIT is a multibyte command so it
provides a length byte that shall be greater then 0 and one or more data bytes. Each data byte provided represents
one bit of communication. The least significant bit of each data byte is sent to the 1-Wire and the result of that bit
communication is placed into a byte in the outbound buffer in a multibyte read format. This command uses the
DATA_MODE data register for the communication speed at which the bit operation is performed on the 1-Wire.

Example: Do the first two bits of the search algorithm manually

inbound CMD_ ML_RESET
CMD_ ML_DATA <2><length=1><0F>
CMD_ ML_BIT <2><01,01>

outbound CMD_ML_RESET <return byte>
CMD_ ML_DATA <1><0F>
CMD_ML_BIT <2><result1,result2>

AN2966: Minimal Remote 1-Wire Master Protocol

27 of 31

Figure 3h. Processing Command CMD_ML_BIT

*See reference in Table 3

Check for room in
outbound for 2 +
data_length (num)
bytes (see Figure 2d)

 Was
 there room
 in outbound
 ?

Yes

No Set return to
RET_OUTBOUND_
OVERRUN

Append command
(cmd) and length
(data_length) to
outbound

Receive *cmd
(CMD_ML_BIT), data_
length, and data_bytes

 Done
 with data_
 bytes
 ?

No

Yes

Do 1 bit operation on 1-
Wire using LSBit of
next data_bytes

Append result to
outbound buffer

Set return to
RET_SUCCESS

Done, return
 the (return) value

Is
data_length

>0?

Yes

No Set return to
RET_WRITE_ONLY

AN2966: Minimal Remote 1-Wire Master Protocol

28 of 31

CMD_ML_DATA
The CMD_ML_DATA gives block level communication with the 1-Wire. The CMD_ML_BLOCK is a multibyte
command so it provides a length byte that shall be greater then 0 and one or more data bytes. The first data byte
defines the total 1-Wire block length in bytes. The data bytes following the block length are sent to the 1-Wire and
the result of that byte communication is placed into a byte in the outbound buffer in a multibyte read format. If the
block length is greater then the provided number of data bytes then the remainder of the block length are
processes as FF hex bytes. This is normally a read operation from a 1-Wire device. This command uses the
DATA_MODE data register for the communication speed at which the block operation is performed on the 1-Wire.

Example: Read the first 32 bytes of memory from the 1-Wire memory device with the ID number in
DATA_ID.

inbound CMD_ ML_ACCESS
CMD_ ML_DATA <3><length=34><F0, 00>

outbound CMD_ML_ACCESS <return byte>
CMD_ ML_DATA <34><2 bytes of write data echo and

 32 bytes of read data>

AN2966: Minimal Remote 1-Wire Master Protocol

29 of 31

Figure 3i. Processing Command CMD_ML_DATA

Check for room in
outbound for 2 +
block_length (num)
bytes (see Figure

Was
there room

in outbound
?

Yes

No Set return to
RET_OUTBOUND_
OVERRUN

Append command
(cmd) and length
(block_length) to
outbound

Receive *cmd
(CMD_ML_DATA), data_
length, and data_bytes

Is
data_length

>0?

Yes

No

Done
with data_

bytes
?

No

Yes

Set return to
RET_WRITE_ONLY

Do 1 byte operation
on 1-Wire using next
of data_bytes

Retrieve the first of
the data_bytes as
the block_length

Append result to
outbound buffer

Set return to
RET_SUCCES

Done, return
 the (return) value

Reference
block_length - total number of bytes

to send in a block to MicroLAN®
*See reference in Table 3

Done
with block_
length bytes

?

No

Yes

Do 1 byte operation
on 1-Wire using FF
hex

Append result to
outbound buffer

AN2966: Minimal Remote 1-Wire Master Protocol

30 of 31

CMD_DELAY
The CMD_DELAY command pauses the execution of the parsing of the inbound buffer by the amount of time
specified in the one data byte provided. The delay command shall at minimum delay the prescribed amount. It may
however go longer. This command is used to time programming and power delivery type 1-Wire functions usually
in conjunction with the DATA_MODE command. This one byte value provides a wide range of delay times by
providing the following meaning to the bit values. The most significant bit is a flag that when set indicates the value
will be in milliseconds and when not set the value is in microseconds. The lower 3 bits represented by X will be
used in the following formula 2^(5+X) to give the values displayed in Table 8.

Example: send a EPROM programming pulse on the 1-Wire.

inbound DATA_MODE <04 (hex) (12 volt pulse on)>
CMD_DELAY <1><04 (hex) 512 microseconds)>
DATA_MODE <00 (hex) (12 volt pulse off)>

outbound

Table 8. Delay Byte Time Values
DELAY BYTE TIME
 00 (hex) 32 microseconds
 01 64
 02 128
 03 256
 04 512
 05 1024
 06 2048
 07 4096
 80 32 milliseconds
 81 64
 82 128
 83 256
 84 512
 85 1024
 86 2048
 87 4096

AN2966: Minimal Remote 1-Wire Master Protocol

31 of 31

Figure 3j. Processing Command CMD_DELAY

Receive *cmd
(CMD_DELAY), data_
length, and data_bytes

Is
data_length

=1?

Yes

No Set return value to
RET_WRITE_ONLY

Retrieve the first of the
data_bytes as the
delay_value

Reference
delay_value - 1 byte value

representing the delay time
*See reference in Table 3

Pause parsing of the
inbound buffer for
delay_value time

Set return value to
RET_SUCCESS

Done, return
 the (return) value

REFERENCE
“Communication with Dallas Semiconductor MicroLAN devices in sensors on remote locations”. Smiczek, David,

and, Jan Kristoffersen, Jørgen Bække, Aug. 1998, IEEE 1451.4

Example ‘C’ implementation of this protocol: ftp://ftp.dalsemi.com/pub/auto_id/public/mlpkt100.zip

ftp://ftp.dalsemi.com/pub/auto_id/public/mlpkt100.zip

