

 1 of 10 REV: 090903

INTRODUCTION
Microchip’s PICmicro® microcontroller devices (PICs) have become a popular design choice for low-power and low-
cost system solutions. The microcontrollers have multiple general-purpose input/output (GPIO) pins, and can be
easily configured to implement Dallas Semiconductor’s 1-Wire® protocol. The 1-Wire protocol allows interaction
with many Dallas Semiconductor parts including battery and thermal management, memory, iButtons®, and more.
This application note will present general 1-Wire routines for a PIC16F628 and explain the timing and associated
details. For added simplicity, a 4MHz clock is assumed for all material presented, and this frequency is available as
an internal clock on many PICs. Appendix A of this document contains an include file with all 1-Wire routines.
Appendix B presents a sample assembly code program designed for a PIC16F628 to read from a DS2761 High-
Precision Li+ Battery Monitor. This application note is limited in scope to regular speed 1-Wire communication.

General Macros
In order to transmit the 1-Wire protocol as a master, only two GPIO states are necessary: high impedance and
logic low. The following PIC assembly code snippets achieve these two states. The PIC16F628 has two GPIO
ports, PORTA and PORTB. Either of the ports could be setup for 1-Wire communication, but for this example,
PORTB is used. Also, the following code assumes that a constant DQ has been configured in the assembly code to
indicate which bit in PORTB will be the 1-Wire pin. Throughout the code, this bit number is simply called DQ.
Externally, this pin must be tied to a power supply via a pullup resistor.

OW_HIZ:MACRO
;Force the DQ line into a high impedance state.
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BSF TRISB, DQ ; Make DQ pin High Z
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM

OW_LO:MACRO
;Force the DQ line to a logic low.
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 BCF PORTB, DQ ; Clear the DQ bit
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BCF TRISB, DQ ; Make DQ pin an output
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM

Both of these snippets of code are written as macros. By writing the code as a macro, it is automatically inserted
into the assembly source code by using a single macro call. This limits the number of times the code must be
rewritten. The first macro, OW_HIZ, forces the DQ line to a high impedance state. The first step is to choose the
bank 1 of data memory because the TRISB register is located in bank 1. Next, the DQ output driver is changed to a
high impedance state by setting the DQ bit in the TRISB register. The last line of code changes back to bank 0 of
data memory. The last line is not necessary, but is used so that all macros and function calls leave the data
memory in a known state.

The second macro, OW_LO, forces the DQ line to a logic low. First, bank 0 of data memory is selected, so the
PORTB register can be accessed. The PORTB register is the data register, and contains the values that will be
forced to the TRISB pins if they are configured as outputs.

PICmicro is a registered trademark of Microchip Technology Inc.
1-Wire and iButton are registered trademarks of Dallas Semiconductor.

Application Note 2420
1-Wire Communication with a

Microchip PICmicro Microcontroller
www.maxim-ic.com

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 2 of 10

The DQ bit of PORTB is cleared so the line will be forced low. Finally, bank 1 of data memory is selected, and the
DQ bit of the TRISB register is cleared, making it an output driver. As always, the macro ends by selecting bank 0
of data memory.

A final macro labeled WAIT is included to produce delays for the 1-Wire signaling. WAIT is used to produce delays
in multiples of 5�s. The macro is called with a value of TIME in microseconds, and the corresponding delay time is
generated. The macro simply calculates the number of times that a 5�s delay is needed, and then loops within
WAIT5U. The routine WAIT5U is shown in the next section. For each instruction within WAIT, the processing time
is given as a comment to help understand how the delay is achieved.

WAIT:MACRO TIME
;Delay for TIME �s.
;Variable time must be in multiples of 5�s.
 MOVLW (TIME/5) - 1 ;1�s to process
 MOVWF TMP0 ;1�s to process
 CALL WAIT5U ;2�s to process
 ENDM

General 1-Wire Routines
The 1-Wire timing protocol has specific timing constraints that must be followed in order to achieve successful
communication. To aid in making specific timing delays, the routine WAIT5U is used to generate 5�s delays. This
routine is shown below.

WAIT5U:
;This takes 5�s to complete
 NOP ;1�s to process
 NOP ;1�s to process
 DECFSZ TMP0,F ;1�s if not zero or 2�s if zero
 GOTO WAIT5U ;2�s to process
 RETLW 0 ;2�s to process

When used in combination with the WAIT macro, simple timing delays can be generated. For example, if a 40�s
delay is needed, WAIT 0.40 would be called. This causes the first 3 lines in WAIT to execute resulting in 4�s. Next,
the first 4 lines of code in WAIT5U executes in 5�s and loops 6 times for a total of 30�s. The last loop of WAIT5U
takes 6�s and then returns back to the WAIT macro. Thus, the total time to process would be 30 + 4 + 6 = 40�s.

Table 1. Regular Speed 1-Wire Interface Timing
2.5V � VDD � 5.5V, TA = -20°C to 70°C.)

PARAMETER SYMBOL MIN TYP MAX UNITS
Time Slot tSLOT 60 120 �s
Recovery Time tREC 1 �s
Write 0 Low Time tLOW0 60 120 �s
Write 1 Low Time tLOW1 1 15 �s
Read Data Valid tRDV 15 �s
Reset Time High tRSTH 480 �s
Reset Time Low tRSTL 480 960 �s
Presence Detect High tPDH 15 60 �s
Presence Detect Low tPDL 60 240 �s

The start of any 1-Wire transaction begins with a reset pulse from the master device followed by a presence detect
pulse from the slave device. Figure 1 illustrates this transaction. This initialization sequence can easily be
transmitted via the PIC, and the assembly code is shown below Figure 1. The 1-Wire timing specifications for
initialization, reading, and writing are given above in Table 1. These parameters are referenced throughout the rest
of the document.

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 3 of 10

Figure 1. 1-Wire Initialization Sequence

OW_RESET:
 OW_HIZ ; Start with the line high
 CLRF PDBYTE ; Clear the PD byte
 OW_LO
 WAIT .500 ; Drive Low for 500�s
 OW_HIZ
 WAIT .70 ; Release line and wait 70�s for PD Pulse
 BTFSS PORTB,DQ ; Read for a PD Pulse
 INCF PDBYTE,F ; Set PDBYTE to 1 if get a PD Pulse
 WAIT .430 ; Wait 430�s after PD Pulse
 RETLW 0

The OW_RESET routine starts by ensuring the DQ pin is in a high impedance state so it can be pulled high by the
pullup resistor. Next, it clears the PDBYTE register so it is ready to validate the next presence detect pulse. After
that, the DQ pin is driven low for 500�s. This meets the tRSTL parameter shown in Table 1, and also provides a
20�s additional buffer. After driving the pin low, the pin is released to a high impedance state and a delay of 70�s is
added before reading for the presence detect pulse. Using 70�s ensures that the PIC will sample at a valid time for
any combination of tPDL and tPDH. Once the presence detect pulse is read, the PDBYTE register is adjusted to
show the logic level read. The DQ pin is then left in a high-impedance state for an additional 430�s to ensure that
the tRSTH time has been met, and includes a 20�s additional buffer.

The next routine needed for 1-Wire communication is DSTXBYTE, which is used to transmit data to a 1-Wire slave
device. The PIC code for this routine is shown below Figure 2. This routine is called with the data to be sent in the
WREG register, and it is immediately moved to the IOBYTE register. Next, a COUNT register is initialized to 8 to
count the number of bits sent out the DQ line. Starting at the DSTXLP, the PIC starts sending out data. First the
DQ pin is driven low for 5�s regardless of what logic level is sent. This ensures the tLOW1 time is met. Next, the
lsb of the IOBYTE is shifted into the CARRY bit, and then tested for a one or a zero. If the CARRY is a one, the DQ
bit of PORTB is set which changes the pin to a high impedance state and the line is pulled high by the pullup
resistor. If the CARRY is a zero, the line is kept low. Next a delay of 60�s is added to allow for the minimum tLOW0
time. After the 60�s wait, the pin is changed to a high impedance state, and then an additional 2�s are added for
pullup resistor recovery. Finally, the COUNT register is decremented. If the COUNT register is zero, all eight bits
have been sent and the routine is done. If the COUNT register is not zero, another bit is sent starting at DSTXLP. A
visual interpretation of the write zero and write one procedure is shown in Figure 2.

tRSTL

tPDL

tRSTH

tPDH

LINE TYPE LEGEND:
Bus master active low DS27XX active low

Resistor pullupBoth bus master and
DS27XX active low

DQ

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 4 of 10

Figure 2. 1-Wire Write Time Slots

DSTXBYTE: ; Byte to send starts in W
 MOVWF IOBYTE ; We send it from IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
DSTXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP ; Drive the line low for 5�s
 RRF IOBYTE,F ; The data byte
 BTFSC STATUS,C ; Check the LSB of IOBYTE for 1 or 0
 BSF PORTB,DQ ; Drive the line high if LSB is 1
 WAIT .60 ; Continue driving line for 60�s
 OW_HIZ ; Release the line for pullup
 NOP
 NOP ; Recovery time of 2�s
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSTXLP
 RETLW 0

The final routine for 1-Wire communication is DSRXBYTE, which allows the PIC to receive information from a slave
device. The code is shown below Figure 3. The COUNT register is initialized to 8 before any DQ activity begins and
its function is to count the number of bits received. The DSRXLP begins by driving the DQ pin low to signal to the
slave device that the PIC is ready to receive data. The line is driven low for 6�s, and then released by putting the
DQ pin into a high impedance state. Next, the PIC waits an additional 4�s before sampling the data line. There is 1
line of code in OW_LO after the line is driven low, and 3 lines of code within OW_HIZ. Each line takes 1�s to
process. Adding up all the time results in 1 + 6 + 3 + 4 = 14�s which is just below the tRDV spec of 15�s. After the
PORTB register is read, the DQ bit is masked off, and then the register is added to 255 to force the CARRY bit to
mirror the DQ bit. The CARRY bit is then shifted into IOBYTE where the incoming byte is stored. Once the byte is
stored a delay of 50�s is added to ensure that tSLOT is met. The last check is to determine if the COUNT register
is zero. If it is zero, 8 bits have been read, and the routine is exited. Otherwise, the loop is repeated at DSRXLP.
The read zero and read one transactions are visually shown in Figure 3.

VPULLUP

GND

tSLOT
tLOW1

tSLOT

WRITE 0 SLOT WRITE 1 SLOT

tLOW0

tREC

LINE TYPE LEGEND:
Bus master active low 1-Wire Device active low

Resistor pullup Both bus master and
1-Wire Device active low

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 5 of 10

Figure 3. 1-Wire Read Time Slots

DSRXBYTE: ; Byte read is stored in IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
DSRXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP ; Bring DQ low for 6�s
 OW_HIZ
 NOP
 NOP
 NOP
 NOP ; Change to HiZ and Wait 4�s
 MOVF PORTB,W ; Read DQ
 ANDLW 1<<DQ ; Mask off the DQ bit
 ADDLW .255 ; C = 1 if DQ = 1: C = 0 if DQ = 0
 RRF IOBYTE,F ; Shift C into IOBYTE
 WAIT .50 ; Wait 50�s to end of time slot
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSRXLP

 RETLW 0

SUMMARY
Dallas Semiconductor’s 1-Wire communication protocol can easily be implemented on Microchip’s PICmicro line of
microcontrollers. In order to complete 1-Wire transactions, only two GPIO states are needed, and the multiple
GPIOs on a PIC are easily configured for this task. There are three basic routines necessary for 1-Wire
communication: Initialization, Read Byte, and Write Byte. These three routines have been presented and
thoroughly detailed to provide accurate 1-Wire regular speed communication. This allows a PIC to interface with
any of the many Dallas Semiconductor 1-Wire devices. Appendix A of this document has all three routines in a
convenient include file. Appendix B contains a small assembly program meant to interface a PIC16F628 to a
DS2761 High-Precision Li+ Battery Monitor.

tSLOT

VPULLUP

GND

READ 0 SLOT READ 1 SLOT
tSLOT

tREC

>1�s

tRDV

Master Sample Window Master Sample Window

tRDV

LINE TYPE LEGEND:
Bus master active low 1-Wire Device active low

Resistor pullup Both bus master and
1-Wire Device active low

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 6 of 10

APPENDIX A: 1-WIRE INCLUDE FILE (1W_16F6X.INC)

; ***
;
; Dallas 1-Wire Support for PIC16F628
;
; Processor has 4MHz clock and 1�s per instruction cycle.
;
; ***

; ***
; Dallas Semiconductor 1-Wire MACROS
; ***
OW_HIZ:MACRO
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BSF TRISB, DQ ; Make DQ pin High Z
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM
; --
OW_LO:MACRO
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 BCF PORTB, DQ ; Clear the DQ bit
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BCF TRISB, DQ ; Make DQ pin an output
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM
; --
WAIT:MACRO TIME
;Delay for TIME �s.
;Variable time must be in multiples of 5�s.
 MOVLW (TIME/5)-1 ;1�s
 MOVWF TMP0 ;1�s
 CALL WAIT5U ;2�s
 ENDM

; ***
; Dallas Semiconductor 1-Wire ROUTINES
; ***
WAIT5U:
;This takes 5uS to complete
 NOP ;1�s
 NOP ;1�s
 DECFSZ TMP0,F ;1�s or 2�s
 GOTO WAIT5U ;2�s
 RETLW 0 ;2�s
; --
OW_RESET:
 OW_HIZ ; Start with the line high
 CLRF PDBYTE ; Clear the PD byte
 OW_LO
 WAIT .500 ; Drive Low for 500�s
 OW_HIZ
 WAIT .70 ; Release line and wait 70�s for PD Pulse
 BTFSS PORTB,DQ ; Read for a PD Pulse
 INCF PDBYTE,F ; Set PDBYTE to 1 if get a PD Pulse

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 7 of 10

 WAIT .400 ; Wait 400�s after PD Pulse
 RETLW 0
; --
DSRXBYTE: ; Byte read is stored in IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
DSRXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP ; Bring DQ low for 6�s
 OW_HIZ
 NOP
 NOP
 NOP
 NOP ; Change to HiZ and Wait 4�s
 MOVF PORTB,W ; Read DQ
 ANDLW 1<<DQ ; Mask off the DQ bit
 ADDLW .255 ; C=1 if DQ=1: C=0 if DQ=0
 RRF IOBYTE,F ; Shift C into IOBYTE
 WAIT .50 ; Wait 50�s to end of time slot
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSRXLP
 RETLW 0
; --
DSTXBYTE: ; Byte to send starts in W
 MOVWF IOBYTE ; We send it from IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
DSTXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP ; Drive the line low for 5�s
 RRF IOBYTE,F ; The data byte
 BTFSC STATUS,C ; Check the LSB of IOBYTE for 1 or 0
 BSF PORTB,DQ ; Drive the line high if LSB is 1
 WAIT .60 ; Continue driving line for 60�s
 OW_HIZ ; Release the line for pullup
 NOP
 NOP ; Recovery time of 2�s
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSTXLP
 RETLW 0
; --

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 8 of 10

APPENDIX B: PIC16F628 TO DS2761 ASSEMBLY CODE (PIC_2_1W.ASM)

; ***
;
; Dallas Semiconductor PIC code
;
; This code will interface a PIC16F628 microcontroller to
; a DS2761 High-Precision Li+ Battery Monitor
;
; ***;
;
; VCC
; ^
; |
; |
; /
; \ Rpup
; /
; \
; |
; 16F628 | DS2761
; RB1 (pin 7) ------------------------------ DQ (pin 7)
;
; ***;

;---
; List your processor here.

 list p=16F628

; Include the processor header file here.

 #include <p16F628.inc>
;---
; Assign the PORTB with Constants

 constant DQ=1 ; Use RB1 (pin7) for 1-Wire
;--
; These constants are standard 1-Wire ROM commands

 constant SRCHROM=0xF0
 constant RDROM=0x33
 constant MTCHROM=0x55
 constant SKPROM=0xCC
;---
; These constants are used throughout the code

 cblock 0x20
 IOBYTE
 TMP0 ; Address 0x23
 COUNT ; Keep track of bits
 PICMSB ; Store the MSB
 PICLSB ; Store the LSB
 PDBYTE ; Presence Detect Pulse
 endc
;---
; Setup your configuration word by using __config.

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 9 of 10

; For the 16F628, the bits are: _____
; CP1,CP0,CP1,CP0,N/A, CPD, LVP, BODEN, MCLRE, FOSC2, PWRTE, WDTE, FOSC1, FOSC0
; CP1 and CP0 are the Code Protection bits
; CPD: is the Data Code Protection Bit
; LVP is the Low Voltage Programming Enable bit
; PWRTE is the power-up Timer enable bit
; WDTE is the Watchdog timer enable bit
; FOSC2, FOSC1 and FOSC0 are the oscillator selection bits.

; CP disabled, LVP disabled, BOD disabled, MCLR enabled, PWRT disabled, WDT disabled, INTRC I/O oscillator
; 11111100111000

 __config 0x3F38
;---
; Set the program origin for subsequent code.

 org 0x00
 GOTO SETUP
 NOP
 NOP
 NOP
 GOTO INTERRUPT ; PC 0x04...INTERRUPT VECTOR!
;---
INTERRUPT:
 SLEEP
;---
; Option Register bits
; ____
; RBPU,INTEDG,TOCS,TOSE,PSA,PS2,PS1,PS0
; 7=PORTB Pullup Enable, 6=Interrupt Edge Select, 5=TMR0 Source,
; 4=TMR0 Source Edge, 3=Prescaler Assign, 2-0=Prescaler Rate Select

; 11010111
; PORTB pullups disabled,rising edge,internal,hightolow,TMR0,1:256

SETUP:
 BCF STATUS,RP1
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 MOVLW 0xD7
 MOVWF OPTION_REG
 BCF STATUS,RP0 ; Select Bank 0 of data memory
;---

 BCF INTCON,7 ; Disable all interrupts.

;---
 GOTO START
;---
; Include the 1-Wire communication routines and macros

 #INCLUDE 1w_16f6x.inc
;---
START:
;---
GET_TEMP:
 CALL OW_RESET ; Send Reset Pulse and read for Presence Detect Pulse
 BTFSS PDBYTE,0 ; 1 = Presence Detect Detected

App Note 2420: 1-Wire Communication with a Microchip PICmicro Microcontroller

 10 of 10

 GOTO NOPDPULSE
 MOVLW SKPROM
 CALL DSTXBYTE ; Send Skip ROM Command (0xCC)
 MOVLW 0x69
 CALL DSTXBYTE ; Send Read Data Command (0x69)
 MOVLW 0x0E
 CALL DSTXBYTE ; Send the DS2761 Current Register MSB address (0x0E)
 CALL DSRXBYTE ; Read the DS2761 Current Register MSB
 MOVF IOBYTE,W
 MOVWF PICMSB ; Put the Current MSB into file PICMSB
 CALL DSRXBYTE ; Read the DS2761 Current Register LSB
 MOVF IOBYTE,W
 MOVWF PICLSB ; Put the Current LSB into file PICLSB
 CALL OW_RESET

NOPDPULSE: ; Add some error processing here!
 SLEEP ; Put PIC to sleep
;---
 end

